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Preface 

This book is a practical guide to protecting CDs against unauthorized copying. 
It is oriented toward a wide reader audience, including advanced users and application 
and system programmers. 

It is not necessary to have expensive specialized equipment or be a security expert 

to create strong, inexpensive, and reliable protection. All that you need to achieve this 

is a low-end CD recorder and a couple of evenings free from other work. This book 

provides a detailed description of CD structure and will let you in to a lot of secrets 

known only to security experts (and not even they know them all), explaining all this 

in simple language, without higher mathematics and practically without Assembler 

language. This is the book’s main unique feature! 

While reading this book, you will learn how to invalidate the disc format in order 

to make it readable (that is, playable) on most CD-ROM drives, but practically 

impossible for any copier to copy, and how to bind to the physical disc structure 

so that copiers are unable either to reproduce or imitate it. You’ll also learn about 

the physical and technical limitations of low-end recorders and how to use these 

to achieve your goals. 

Also covered will be the control over CD drives and recorders at a low level and 

how to get the maximum control allowed by specific drive models over CDs. All cir¬ 

cumstances being equal, a disc protected using high-tech drive cannot be copied by all 

other drives. The book provides detailed information on the differences between drive 

models and which characteristics deserve the most attention when choosing a drive. 

The book also discusses practically all commercial CD protection packets available 

today. It lists their implementation errors, ’’thanks” to which the copying of protected 
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discs is still possible. The author also suggests several protection mechanisms that take 

into account his own bitter experience and that of his friends and colleagues. These 

protection mechanisms cannot be copied using any of the copiers that exist today. 

With regard to copiers, here you’ll find detailed description of the most popular 

protected CD copiers: Clone CD and Alcohol 120%, which, according to their devel¬ 

opers, "can copy practically any protected disc, provided that the right combination of 

CD-ROM and CD recorder is chosen.” The author demonstrates, using practical ex¬ 

amples, that this is not actually the case, and suggests some protection mechanisms 

that cannot be copied by Clone CD and/or by Alcohol 120%. 

Finally, the book explains how to create a protected CD copier on your own, 

making the replication of protected discs a much easier task. 



Introduction 

CD protection is important today as never before. The widespread use of low-end re¬ 
corders allowed any user to duplicate discs in almost mass-production quantities. The 

lion’s share of existing discs has not been purchased because users simply borrow 
them from their friends or colleagues. At the same time, most shareware programmers 
distribute their products on CD-R discs by mail, which considerably complicates the 

hacker’s task. If the program is not freely available, how can it be cracked? 
As a result, users are interested in cracking protected discs, while developers have 

the opposite goal, namely, protecting CDs against cracking. This book satisfies the 
needs of both groups. It explains how to crack practically any currently existing pro¬ 
tection software and suggests a range of new protection mechanisms that virtually 

cannot be cracked. 
CD protection against copying contains a large amount of material that has never 

been published before. It provides the reader with detailed information on CD struc¬ 
ture and discloses lots of secrets known only to professionals (and not even to every 
professional). At the same time, the author tries to present this material in an accessi¬ 
ble form, without excessive use of higher mathematics and practically without the use 
of Assembler language. 

Having read this book, the reader (even with no special training) will learn how to 
create discs that, in principle, cannot be copied because of the hardware limitations of 
contemporary CD-R/CD-RW recorders. Besides this, the reader will learn how to 

avoid conflicts with non-standard equipment, as a result of which protection mecha¬ 
nisms refuse to work or, even worse, damage the user’s equipment. 

The book is oriented to the wide spectrum of readers, so the reader doesn’t have to 
have any previous experience or background knowledge. The reader might even lack 
knowledge of the sector structure of a CD-ROM (by the way, 99 percent of 
programmers don’t know much about this either). All of the information necessary 
for understanding the principles of CD operation is provided directly in the book, 
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and references to third-party sources are minimal. The reader doesn’t need to be 

a programmer, because all of the required utilities for the analysis, protection and 
cracking of CDs are supplied along with the book. These copiers, developed by the 
author, will make all work automatically for the reader. Thus, the book is worth pur¬ 
chasing, if only for of the contents of the companion CD alone. 

At the most, the reader must be familiar with mathematics at the University level, 

know how to use disassembler, and be able to work with C and Assembler programming 
languages. Of course, reading this book won’t make you a guru, but you’ll still acquire 

almost unlimited power over CDs and be able to do whatever you like with them. 

Notation Conventions 
To prevent confusion and at the same time avoid unnecessary verbosity, the book will 
use several notation conventions, which are briefly outlined below: 

□ NEC drive — _NEC CD-RW NR-9100A, firmware version 1.4 

□ ASUS drive — ASUS CD-S500/A, firmware version 1.4 

□ TEAC drive — TEAC CD-W552E, firmware version 1.09 

□ PHILIPS drive — PHILIPS CDRW2412A, firmware version 1.5 

Alcohol 120% — an excellent copier of protected CDs, a shareware version of which 

can be downloaded from http://www.alcohol-soft.com/. This automatically cracks more 

than half of all currently existing anti-copying mechanisms and allows you to mount im¬ 
ages of protected discs dynamically to a virtual CD-ROM drive, which is very convenient 
for the purpose of experimentation. Unfortunately, only ’’correct” images can be 

mounted, and most images in protected discs cannot be classified as such. 
Clone CD — a good copier of protected discs, a shareware version of which can be 

downloaded from http://www.elby.ch/. Copying protected discs in completely auto¬ 
matic mode is, of course, not the strongest point of Clone CD. It could be more accu¬ 
rate to say that it copes with this task poorly. However, after manually tweaking the 

program settings and the image of the protected disc, it also can copy over half of all 
existing examples of protection mechanisms. But to say that Clone CD can "crack” 
practically any types of protection would be far from accurate. 

Historical Aspect 
The first attempts to protect CDs against copying were undertaken in early 1990s. 
CD recorders didn’t exist at that time, and developers mainly had to prevent unau¬ 

thorized copying of CD contents to hard disk. But what about pirates? you may ask. 
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Yes, piracy always has been and remains a serious problem. However, attempts at 
stopping piracy by software protection are, at least, naive. Those who replicate discs in 

commercial quantities always employ a team of experienced hackers who crack these 
protection mechanisms without any real effort. The intellectual potential of "cracking" 

teams in these clandestine enterprises is practically unlimited. They always try to em¬ 
ploy the very best (I know this from personal experience, because some years ago, be¬ 
fore the adoption of appropriate laws, I also worked on a team like this). The financial 
factor, by the way, is not the primary one here. Hackers were not paid large money, 

and had to work like slaves. The work itself was what attracted them. Where else could 
you get acquainted with such a large number of various protection mechanisms and 
learn how to crack them? 

To be honest, I have exaggerated a bit in discussing the variety of protection 

mechanisms available. At that time, the "variety" included two main types of protec¬ 

tion: LaserLock and "code wheel". With the arrival of CD recorders, the importance 

of protection against copying grew considerably. As a result, they began to grow like 
mushrooms after a warm rain. By the beginning of 2003, there were already more 

than 50 various protection mechanisms available on the market. The majority 
of these were marketed on the basis of the "know-how" of their developers. How¬ 

ever, most hackers, having analyzed one of these protections using a disassembler, 
began to feel nostalgic for days gone by, when software came on diskettes and one 

out of every two examples was protected. Contemporary CDs, of course, are different 

from old-fashioned diskettes. However, the techniques of their protection are, in 

principle, the same! 
Contemporary protection mechanisms use the mainly following methods: 

non-standard formatting, the introduction of key marks, binding to the disc surface, and 

weak sectors. Let us consider each member of this family in more detail. 

Non-standard formatting, in general, consists of intentionally introducing specific 
errors to prevent the normal processing of information. For example, if we artificially 

increase the length of every protected file to ~666 GB by correcting the length field, 
any attempt at copying such a file to a hard disk will fail. At the same time, the protec¬ 

tion mechanism that knows exactly where each specific file starts and ends can work 
with them without any problems. Naturally, such a protection mechanism can be 

hacked easily by copying the disc at the sector level. However, to do this, the copier 
must know the exact number of sectors available on the disc. The developer of a pro¬ 

tection mechanism can easily tweak the disc structures so that the disc looks either 
absolutely blank or, on the contrary, grows beyond any conceivable size. Recorders 

that mechanically read the disc TOC and blindly rely on the correctness of each byte of 
control data will fail immediately. More advanced examples will manage to determine 

the actual size of the disc through some implicit indications. Recorders of this type will 
move the optical head until the sectors under it remain readable while it is being 
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moved. Let’s assume that the protection is using a cunning mechanism and "digs 

a hole” consisting of a bunch of bad sectors near the end of the disc. Some recorders 

will fall into that pit, thinking that they have reached the end. Some recorders won’t be 

deceived by this trick, because they carefully analyze the information returned by the 
drive, which should know the cause of the read error — be it the actual end of the disc 

or simply a bad sector. 
Some protection mechanisms play even dirtier tricks, boldly writing irrecoverable 

errors to the original disc (which means that these errors cannot be eliminated by the 

special error-correction codes placed on the CD). If this approach is used for protect¬ 

ing an audio CD, this means that its playback will be accompanied by endless clicks. 
This doesn’t happen in practice because the developers of audio players have made the 

provision of a special filter that discards data that are sure to be erroneous and uses 
interpolation when necessary (in this case, the current sample is recreated on the basis 

of the averaged values of those that precede and follow it). Naturally, this degrades the 
playback quality. Media magnates, however, don’t give much of a damn about this, 

and, realistically, the degradation isn’t significant. However, the situation is different 

with regard to digital playback. Early versions of the standard instructed the drive to 
report only occasions where one or more irrecoverable errors were encountered, but 
didn’t provide any mechanisms for "marking” the faulty bytes. So the drive has read 

2,352 bytes of data and detected that about hundred of them were invalid! What next? 
Use interpolation? If the answer is yes, what should we interpolate — which byte by 

which?! Analyze the signal manually, searching for "outbreaks?" This is too difficult 

and, anyway, the quality of the "restored" audio will be very far from perfect. It is, of 

course, possible to try grabbing the audio flow from the digital audio output. How¬ 

ever, most low-end sound adapters do not support this capability. Even if this kind of 

support is provided, it is implemented so poorly that music lovers would be better off 
simply shooting themselves. Put simply, dark clouds without the slightest trace of a 

sunshine began to gather over hackers. However, everything changed after manufac¬ 
turers began to offer CD drives capable not only of simply reporting read errors, but 

also of reporting the positions of erroneous bytes within the sector. Now, fully func¬ 
tional interpolation became possible at the interface level! After this, software grabbers 

exploiting new possibilities arrived quickly. 
Still, we are running ahead of ourselves. Let’s return to that distant past when there 

were no CD drives, even in the project phase. All software was distributed on diskettes 

(both copyright and copyleft). By that time, everyone who wanted to protect their 

diskettes scratched them using any means available: those who had the necessary fi¬ 
nancial resources burnt the magnetic layer using a laser, while others simply scratched 

it with a needle or rusty nail. All that remained to ensure protection was to check 

whether the surface defect was present in the predefined position. Copying such 

a diskette without special equipment was not a realistic task, because no one could 
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place the scratches from the original in the same position on the copy. However, hack¬ 

ers understanding controller ports quickly came up with the idea that, if they modified 

the checksum of the key sectors, the diskette would be read with errors, despite the fact 

that its surface was physically intact! CD protection is based on the same method, 

and CDs can be cracked using the same approach. The manufacturer can stuff the disc 

with bad sectors and check their presence any time the protected software started. This 
generated the following problems: first, not every copier would agree to copy a disk 

bearing physical defects. Even if it agreed to do what you asked it, you would have to 
wait a very long time for the copying process to be completed (everyone is familiar 

with the snail’s pace of reading defective sectors). Further, the resulting copy would be 

unusable, because it didn’t contain the defects in predefined positions. 

Less than intelligent hackers simply invalidate the checksum of the sector, thus 
making the drive return an error (naturally, the recording drive must allow us to write 
sectors with a checksum error, which is not always the case). This, however, doesn’t 

solve the problem. After all, the disfigured sector is read practically immediately, and the 
protection mechanism, provided that it isn’t absolutely useless, can detect easily that 
something is wrong here. Or, as a variant, it can carry out long sector reading, meaning 

that the sector with modified checksum will become readable. 
What should a cunning hacker do? This question can’t be answered immediately or in 

simple language. Simply speaking, the CD format is such that the high-frequency signal that 

results when reading a sequence of pits and lands under an optical head has no reference 

level. For the drive to be able to detect where there is a minus and where there is a plus, the 

number of lands must be approximately equal to the number of pits. If some specific sec¬ 

tion of a sector contains only pits, it will be catastrophically dark, and an automatic ampli¬ 

fier will try to increase the laser-ray power, erroneously assuming that there is something 

wrong either with the disc or with the optics. In this case, a number of the pits will be 

turned into lands and the drive will be confused in every respect. First, it will try to carry out 

recalibration, drag the optical head for some time, and only then will it sadly report that this 

sector is unreadable. From the protection mechanism’s point of view, this sector will appear 

to be damaged, although, at the physical level, its surface is intact. 

Now, let’s return to the main aspect: Because the drive must be able to record any 
imaginable (and even unimaginable) data correctly, the developers must make provi¬ 
sions for a method that can bypass such unfavorable situations. In fact, such a mecha¬ 
nism does exist! To put it simply, there are several possible methods of encoding the 
data being written to the disc, and the drive must choose the most favorable options. 
Fortunately (or unfortunately), not every drive is so scrupulous. Since the possibility 
of the unintentional occurrence of unfavorable sequences is infinitely small, some 

(in fact, many) drives encode the data using a single predefined method. Conse¬ 
quently, there is the possibility for simulating faulty sectors that practically do not 
differ from actual faulty examples. 
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The protection developers saw this as a gold rush! If they could only specially glean 

an unfavorable sequence of bytes, then a specialized drive would be required to write it 
correctly. When copying such discs on a normal low-end drive, the original would be 

read wonderfully, but there would be a lot of bad sectors on the copy and the dupli¬ 
cated disc would be unusable. Sectors with unfavorable sequences became known as 

weak sectors. To copy such sectors, it is necessary to have high-end sophisticated 
drives from well-known brand manufacturers. But what if you don’t have such a drive 

at your disposal? Does this mean that you are unable to copy such a disc? The answer 
is no! If the protection doesn’t take additional measures, the copier can compute er¬ 

ror-correcting codes for a true unfavorable sequence and then correct it slightly and 
write to the disc. At the physical level, such a sector will be readable without any prob¬ 

lems. At the logical level, the drive will restore it to its initial form using redundant 
codes. However, if the protection reads the sector in RAW mode, it will immediately 

recognize the forgery. Therefore, not every disc can be copied using this method. 
To understand the concept behind the next protection mechanism, we must re¬ 

turn to diskettes once again. The physical surface of the diskette is divided into con¬ 

centric rings named cylinders, and cylinders, in turn, are divided into sectors. When 

the read head moves from the last sector of one cylinder to the first sector of the next 
cylinder, it is moved some distance away due to diskette rotation. Consequently, the 

drive must wait for an entire turn to meet that sector again. Those who spent days and 
nights in computing centers came to the idea that if the sectors of each of the next 

cylinders were shifted, the speed of the sequential reading would grow considerably, 
because the required sector would immediately be under the head. On the other hand, 

by rotating the sectors of different cylinders by certain angles, we would achieve cer¬ 
tain fluctuations of the data-exchange speed. According to these fluctuations, the pro¬ 

tection mechanism would be able to distinguish a duplicate from the original, because 
a duplicate wouldn’t produce such fluctuations. 

Now let’s return to CDs. There are, of course, no cylinders, and the sequence of 
sectors has a spiral form. Head positioning to the sectors of the adjacent spiral track 

turns is carried out by means of deviating the laser head by a magnetic system (which 
means that it takes place almost instantly). Positioning to remote sectors involves the 

mechanism of moving the head along special ’’sliders,” which requires considerable 

time. Knowing the speed of disc rotation and having measured the time required for 

positioning the head to the sectors of the adjacent turns of the track, we will be able to 

find the angle between them, which depends directly on the spiral’s swirl. Different 

types of CD-R/CD-RW discs have different spiral structures. Even worse, this struc¬ 

ture is created by the manufacturer, which means that the discs are supplied to the 

market with preliminary formatting required for orientation of the CD recorder. 

Copying a disc protected in this manner is unrealistic and, therefore, it is necessary 

to emulate it. The copier must carefully measure the angles between different sectors 
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and recreate the initial structure of the spiral. The process of scanning the disc requires 

a monstrous amount of time (sometimes, several days). The result, however, is worth it. 

The disc can also have a catastrophically non-standard format. For instance, it can 
have sectors of variable lengths. As a result, some sectors will be read faster than oth¬ 

ers. Because every change of the sector length is immediately reflected in the structure 
of the spiral track, the copier has to deal with two unknown values — the unknown 

angle of the spiral swirl and an unknown sector length. From the mathematical point 
of view, this equation can have many possible solutions. Only one of them, however, is 
correct. The copier can (and must!) present several variants of copies to allow us to 

decide on our own, which of them cracks the protection and which doesn’t. Unfortu¬ 
nately, no copier, of which I am aware, is capable of doing this. 

Nevertheless, long sectors represent a stand-alone entity, and some discs use these 

sectors alone for the protection. The dark side is that no CD burner available on the 

market allows us to control the lengths of the sectors being written. There is one clue 

though. Although we cannot increase the sector length, we can still create two sectors 

with identical headers. Having successfully read the first of the two sectors, we will 

ignore the second, but the visible sector length will be increased twofold. The weak 
spot in this technology is that we can only increase the sector length by a value that is 

a multiple of two. Even worse, not every drive provides this possibility. Some drives 

simply refuse to write twin sectors. 

Now let’s discuss key marks. Besides the user data sector area, which is copied 

by practically all copiers, there are numerous locations on CDs which have been 

poorly investigated. First, there are subcode channels. There are eight of these channels 

in total. One stores service information, according to which the laser head is oriented, 

the second stores information about pauses, and the remaining six channels are free. 

Standard copiers do not copy them, and not every burner provides the possibility 

to write them. These channels are exactly where protection mechanisms insert 

key marks! 

By the way, subcode channels are stored independently on the main data channel, 

and there is no direct correspondence between them. First, when reading the subcode 

channel of sector X, the drive can return the subchannel data from any of neighboring 

sectors at its discretion. The second important factor is that most drives have very 

poor stability characteristics, and, when reading subchannel data from sectors X, Y, 

and Z, can return the data from X, X, X, or Y, Z, X, or Y, Z, Z, or any other combina¬ 

tion. Let’s assume that the subcode channel of one of the sectors contains a key mark, 

and we are trying to read it. Will we succeed? Not necessarily. If service information is 

modified at least slightly, we won’t be able to determine, to which sectors the subchan¬ 

nel data that we have read actually belongs or whether or not our sector belongs to 

their list. The only way out is to use a high-quality CD-ROM drive that has good sta¬ 

bility characteristics when reading subchannel data. 
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Finally, CD-R/CD-RW discs are significantly different in some characteristics from 

the replicated mechanically stamped CD-ROM. Is there any need to introduce ATIP? 
Aside from this, there also is such thing as TDB (Track Descriptor Block), where, 
among other information, there is laser power and other similar data. Naturally, CD- 
ROM discs do not contain anything of the sort. It is impossible to falsify the CD-ROM 
disc nature directly. However, there are many utilities that intercept all attempts at ac¬ 

cessing the drive and return exactly what we need instead of the actual information. 
At this point, let’s complete our brief overview of protection mechanisms. Further 

on, each of them will be considered and discussed in more detail. 
Note that bypassing the protection against CD copying is not the same thing as 

copyright violation! The laws of many countries explicitly allow the creation of backup 
copies of licensed media. At the same time, there is no existing law that prohibits the 
"cracking” of legally purchased software. License agreements can prohibit whatever the 
manufacturers like. They have, however, no legal status. By violating a license agree¬ 
ment, you automatically cancel the contract with the software vendor, which means 

that you make void all warranties and privileges that the vendor promised you. This is 
approximately the same thing that overclockers do when they cut specific processor 
pins to unlock its frequency multiplier. You won’t land in court if your processor dies 
in clouds of smoke. However, no one is going to replace your burnt-out specimen. 

You can only be prosecuted by law if you start to distribute the cracked software. 
This is a risk, therefore, that I don’t advise you to take. 

Thoughts about Hackers, Protection Mechanisms, 
and Programming 

Hackers and developers of protection mechanisms are not just opponents. They are also 
colleagues. If we assume that hackers are parasitic for programmers, exploiting their in¬ 
ability to build truly high-quality protection mechanisms, then we have to realize that 
programmers are parasitic for users, exploiting their inability to write programs! 

Hacking and programming actually have very much in common. Creating high- 
quality and reliable protection mechanisms requires the skills of low-level program¬ 

ming, working with the operating system, drivers and equipment, knowledge of the 
architecture of contemporary processors, the specific features of code generation typi¬ 
cal for specific compilers, and the "biology” of the libraries being used. At this level of 
programming, the distinction between programming as such and hacking becomes so 
thin and difficult to differentiate, that I won’t even try to draw it. 

Let’s start by stating the fact that every protection, as is the case with any other 
software component, requires careful and thorough testing in order to evaluate its us¬ 

ability. In this context, "usability" is interpreted as its ability to withstand attempts 
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at cracking it done by qualified users armed by hacking tools (protected disc copiers, 
virtual drive emulators, window and message spies, file and registry monitors). Pro¬ 

tection quality is not evaluated by its strength, but, instead, by the relationship between 
the man-hours required for its implementation and the man-hours required for its 
cracking. In the long run, every protection system can be cracked, because cracking is 
only a matter of time, money, cracker qualification, and efforts. However, expertly de¬ 
signed protection must not provide easy opportunities for this cracking. Here is a 
practical example illustrating this statement. A protection mechanism that binds to 
bad sectors (which are actually unique to each storage medium) is practically useless if 
it cannot recognize their rough emulation by incorrect EDC/ECC fields. Here is an¬ 
other example. Binding to the geometry of the CD spiral track, even if its implementa¬ 
tion is bug-free, can be bypassed by means of creating a virtual CD-ROM drive that 
emulates all of the specific features of the original disc structure. Notice that you don’t 
have to be a hacker to do this, because in this case, it is enough to run Alcohol 120%, 
which cracks such protection mechanisms automatically. 

The design errors of protection mechanisms bear a dear cost for their developers. 
However, no one is warranted against such errors. Attempts at applying a "scientific” 
approach to the development of software protection are an absolutely senseless farce. 
Hackers laugh at academic-style works with names like "Computing trajectory of 
a spherical cube in vacuum." In fact, practically all of these types of protection can be 
removed within 15 minutes without any serious mental effort. Here is a rough, but 
illustrative example. Designing a defensive strategy for a fortress without taking into 
account air power will allow anyone to occupy it using even the oldest aircraft used 
in warfare (MS WDB is such an aircraft), let alone modern fighter-bombers (Soft-Ice 
is a fighter, while IDA Pro is a bomber). 

To develop protection mechanisms, the programmer must have at least a general 
idea about the working methods and technical tools used by his or her opponents. 
To master this technical arsenal at a level no lower than that of the opponent is even 
better. Practical experience (actually cracked programs) is highly desirable, since it allows 
to study the tactics and strategy of the offensive party carefully, thus allowing for the or¬ 
ganization of an optimal defense. Simply speaking, it allows us to detect and reinforce the 
most probable targets against hacker attacks, concentrating on them the maximum avail¬ 
able intellectual resources. This means that the developer of protection mechanisms 
must be inspired by the hacker psychology, and start thinking like a hacker. 

Thus, mastering information-protection technology assumes the mastering of 
cracking technology. If you don’t know how protection mechanisms are cracked, what 
their vulnerabilities are, and have no information about the hacker’s arsenal, you 
won’t be able to create a strong protection mechanism that is, at once, inexpensive and 
easy to implement. The books about security that consider this subject exclusively 
from the protection point of view have the same drawback as storage devices that can 
only write information — they have no practical applications. 
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Chapter 1: CD Organization 

In this, mainly theoretical chapter of the book, the reader will become acquainted 
with CD organization and the principles of optical recording. Without this knowledge, 

any study of CD-protection principles is simply impossible. 
Physically, a CD is a thin plate made of polycarbonate plastic with a thin reflective 

aluminum (or, in some cases, golden) layer. The reflective layer, in turn, is covered by 

another, special protective layer (Fig. 1.1). The reflective layer is imprinted with 

a chain of microscopic pits and lands, arranged in a form of a long, continuous spiral 
track. This track is similar to those that you would see on an old vinyl phonograph re¬ 
cord (Fig. 1.2). Unlike the vinyl record, however, the information on a CD winds from 
the disc’s center to its outer edge. CDs, therefore, are similar to sequential access de¬ 

vices with accelerated rewinding. 

Paint or lacquer —I 

Protective layer 
Reflective layer 

Polycarbonate 
plastic 

a b 

Fig. 1.1. Cross-section of a CD (a) and enlarged image of the pits on its surface (b) 
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Digital Instruments NanoScope 

Scan size 
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Image Data 
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0.1518 H z 

258 

Height 

500.0 nm 

2.000 pm/div 
500.000 nm/div 

(c) Institute of Semiconductor Physics NAS Ukraine 

a b 

Fig. 1.2. CD is similar to an old vinyl phonograph record 

Pits, Lands, Frames, and Sectors in Brief 
Contrary to common belief, pits and lands do not directly correspond to the ones and 
zeroes of binary code. Information is stored on CDs according to much more sophisti¬ 

cated and advanced principles. The one of binary code is represented by a change from 
a pit to a land or from a land to a pit, while the zero of binary code is represented by the 

lack of a change for the current interval (Fig. 1.3). At the same time, between two ones 
there must be no less than two and no more than ten zeroes. The lower limit is a result 
of technological problems involved in the manufacture of the physical discs manufac¬ 
turing, while the upper limit is due to the instability of disc rotation speed. For exam¬ 
ple, if the stability of rotation speed is 3 percent, then, when reading a sequence of ten 
zeroes, the error will be 1/3 bit, which doesn’t pose any problems. However, when 
reading a sequence of fifteen zeroes, this error grows to 1/2 bit, and the drive will have 
problems with rounding this error. 

First 14-bit EFM word Merging bits Second EFM word 

1 0 0 1 0 0 0 1 1 o
 

0 

o
 

1 0 0 0 1 0 0 

—
 

o
 

o
 

Fig. 1.3. Principle of writing data on a CD 
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Fourteen bits make up one EFM-word, which is encoded into a normal 8-bit byte 

according to special table. In fact, the abbreviation EFM stands for Eight to Fourteen 

Modulation. Every two EFM words are separated by three merging bits, which are in¬ 

tended, first, for resolving situations of encoding conflict (for instance, where one 

EFM word terminated by the binary value of one is followed by another EFM word 

that starts with the same binary value), and, second, to prevent the occurrence of erro¬ 

neous sync groups, which will be covered in detail a little bit later. 

A group of 36 bytes makes up an FI frame, which comprises the sync group pre¬ 

ceding it, a subcode byte, and two 12-byte data groups supplied with 4-byte checksum 

(or CRC) fields. 

Sync 
group 

b li I2 

<D -o O 
O 
n 
D 

CO 

13 14 

Data 
(on AUDIO: channel A sample) 

IQllI |12 |13 14 15 

CRC 

161718 h9 

Data 
(on AUDIO: channel B sample) 

120I21I22I23I24I25I26I27I28I29I30I31 

CRC 

m 33 34 35 

Fig. 1.4. Structure of an FI frame 

Frames are joined to form sectors, also called blocks. Each sector contains 98 cha¬ 
otically mixed frames (mixing allows for the reduction of the influence of medium 
defects, since useful information is spread over the track). At the same time, the first 

16 bytes of each sector are occupied by the header, which contains a 12-byte Sync field, 

a 3-byte Address field, and a 1-byte Mode field (Fig. 1.5). 

Fig. 1.5. Structure of the sector header 

The sector is significant because it is the smallest unit of data that a CD drive can 

read in raw mode. Note that there are no drives that would allow for the retrieval 

of the frame contents "as is." On the contrary, all drives forcibly recover frame con¬ 

tents at the hardware level, using CRC fields for this purpose. Details related to error- 

recovery technique will be provided later. For the moment, it is enough to note that 

the lack of access to actual "raw" bytes rules out obtaining a bit-by-bit disc copy. 

This means that the protection mechanism has the principal capability of distinguish¬ 

ing a copy from the original. 
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Subcode Channels 

Along with various auxiliary information, the FI frame contains one subchannel byte, 
also called the subchannel or control byte (see Fig. 1.7). Subchannel data are entirely 
isolated from sector contents and, in some ways, behave exactly like multiple data 
flows in the NTFS file system (see "Inside Windows NT File System ” by Helen Custer). 
Fig. 1.6 illustrates this. 

Fig. 1.6. Hierarchy of different data structures 

Every one of the eight bits that make up the subcode byte is designated by an up¬ 
per-case Latin character: P, Q, R, S, T, U, V, and W, respectively. Similarly named bits 

of subchannel bytes in all frames are joined into so-called subcode channels. Channels 

consist of sections, each of which is created by means of joining subchannel data from 
98 frames, which equals one sector (see Fig. 1.7). However, section and sector bounda¬ 
ries may not coincide. Consequently, to guarantee the retrieval of one section from 
a disc, we must read the first two sectors. The first two bytes of the section are used 
for synchronization, while 96 are dedicated for the storage of actual data. By means 
of simple calculation, we can discover that for every channel there are exactly 16 bytes 

of raw, unprocessed data. 
Data of P and Q subchannels are supplied in the form of data that are ready for 

use. The first 12 bytes are the most important, while the others are used for alignment. 

Data of R-W channels must be specially prepared before used (this process is known 

as "cooking"). The 96 6-bit symbols that make up these channels are divided into 

4 groups comprising 24 words. Every group of this type is called a pack, and includes 
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16 symbols of user data and two EDC/ECC fields, one of which contains 2 symbols of 

correcting codes, and the second of which contains 4 symbols of correcting codes. 

98 Bytes- 

12Q 4 pad 

Formatted Q 

PACKET 

4 groups of 24 words 

Sync 

Sync 

P Q R-W 

R-W 

\- 96 Bytes (RAW) 

Sec. 5.1.6 Red Book (Howto cook packet data) 

PACKET 

Synch 4 groups of 24 words 

in 

Mode EDC/ECC User data EDC/ECC 
& Item Parity QO/1 Parity P0-P3 

m ph [2 ii is □ 1 4 1 
Instruction 

Fig. 1.7. Subchannel data organization 

What information is stored in subcode channels? According to the ECMA-130 
standard, "normal" CDs use only two subchannels: P and Q. 

The P subchannel contains the termination marker of the current track and 
a pointer to the next track, while the Q subchannel is used for the storage of service 
information, which determines the current position of this block on the disc. Of all of 
the channels, this is the most important. 

In its structure, the Q subchannel comprises the following four parts: four control 
bits corresponding to the Control field, four address bits corresponding to the q-Mode 
(ADR) field; 7 bits of Q-data, corresponding to the q-Data field, and 16 bits of the 
checksum, corresponding to the CRC field (Fig. 1.8). 
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Table 1.1. The format of Q-subchannel data 

Byte Description 

0 Control/ADR 

1 TNO (Track Number) 

2 Index 

3 PMin 
Head position in relation to the track start 

(relative address) 
4 PSec 

5 P Frame 

6 Zero 

7 Amin 
Head position in relation to the start of the disc 

(absolute address) 
8 Asec 

9 Aframe 

10 
CRC 

11 

12 

13 

14 
Reserved for alignment 

15 

Fig. 1.8. Data format of the Q-subchannel 
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The Control field defines the track contents (audio or data), the number of audio 

channels (stereo or quadro), and specifies whether the copying of data is permitted. 
In particular, the sequence "0110" specifies that the user-data part of the sector stores 
digital data that may be copied. Conversely, the sequence "0100" prohibits data copy¬ 
ing from the disc. In other words, if the first bit from the right (numbering starts from 
0) is set, then copying is permitted. Curiously, most drives always reset this bit to zero, 
even if files created by the user are written to the disc. Nevertheless, copiers ignore 
these absurd prohibitions altogether. Therefore, the end user may be unaware of the 

problems that could arise! 
The q-Mode field defines the format of data representation in the q-Data field. 

For most CDs, this is equal to 1. 

The q-Data field in the q-Mode == Mode l mode comprises nine single-byte fields 
containing information about the sector (other modes are not considered because of 
their exotic nature): 

□ TNO (Track Number) — contains the number of the current track, receiving val¬ 
ues ranging from 01 to 99; the magic value of OxAA points to the Lead-out track. 

□ INDEX— contains the index of the current section within the current track: 
00 — specifies pause, while values from 01 to 99 identify sections with useful data. 
Currently, however, this possibility is not utilized and the section index is either 
always equal to zero (audio-pause), or to one (actual data); the Lead-out index of 
the track must be equal to zero. 

□ MINy SEC, FRAC— the time or sector playback, from the starting point, of the 
current track (minutes: seconds: frames, respectively). Also called the relative 

playback time. 

□ ZERO - this field must always be equal to zero. 

□ A-MINy A-SEC, A-FRAC — the playback time of the disc from the starting point of the 
data area (minutes: seconds: frames, respectively). Also called the absolute replay time. 

The CRC field contains the checksum of the contents of the Q subcode channel. 

It is calculated according to the following polynomial: G(x) = x16+x12+x?+l. 

Sector Addressing 
The addressing of sectors originated with audio discs. It is written in the following 
format: Time — mm:ss:ff (minutes: seconds: fractions fractions of a second range 
from 0 to 74). Counting starts from the beginning of the program area, i.e., the ad¬ 
dresses of the Lead-In area are negative. 

To convert MSF address to the LBA format, the following formula can be used: 
Logical Sector Address = (((Minute*60)+Seconds)*75) - 150 
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Raw and Cooked Sectors 
IEC 908 is the standard for audio CDs. Because it was published in 1982 in the form 
of a book with a red cover, it is officially called the Red Book. This standard describes 

the sector as a logical block 2,352 bytes long that has no additional fields and represents 
a continuous audio flow of digitized music. Logical enough, the sectors of all other 

storage media, including diskettes and hard disks, are organized in a similar way at the 
logical level. They only differ with regard to the sector length (for instance, the length 
of a sector for diskettes and hard disks equals to 512 bytes). 

Unfortunately, any attempt to use an audio CD for storing data invariably 
failed. The prohibitively high storage density, along with the technical imperfec¬ 

tion of the read mechanism, resulted in persistent errors while attempting to read 
the disc. The number of these errors for a 10-second interval might reach 200! 
For audio, this seemed relatively normal, since erroneous bits can easily be cor¬ 
rected by interpolation. Although the reliability of streaming audio is not a guar¬ 
antee in this case, even the well-trained ear of a musician is unable to notice the 
difference. Therefore, the increase in storage density for the sake of increasing disc 

capacity seems justified. 
Naturally, for the correction of errors that occur in the course of reading data files, 

the interpolation approach is not suitable. Consequently, the file being read will be ir¬ 

recoverably corrupted. To solve this problem, it was necessary to increase the redun¬ 

dancy of the information being written to the CD and to introduce additional error- 

correction codes. For the purpose of maintaining compatibility with existing equip¬ 

ment (including the existing production capacities), the existing information-storage 

format was preserved, but with another level of abstraction added. 

The Yellow Book standard, published in 1983, describes the sector as a complex 

structure comprising a 12-byte sync sequence, a 4-byte header, a 2,048-byte data area, 

a 4-byte Error Correction Code (ECC) field, an 8-byte Auxiliary field, and a 276-byte 

Error Detection Code (EDC) field. This structure is shown in Fig. 1.9. 

Naturally, CD-ROM drive hardware hides all of these details and displays the 

contents of the auxiliary fields only when it receives a special command (which, by 

the way, is not possible on all models). From the programmer’s point of view, 

2,048 bytes of user data area is the minimum set of information, with which 

the standard drive must work. Therefore, it is fine that the length of a logical sec¬ 

tor became a multiple of the sector length of all of the other devices as a result of 

the contraction of the "actual” sector! So, what is the problem? Why should 

we dig so deep? The answer is obvious: By manipulating with auxiliary fields, you 

can create discs that cannot be copied with standard tools. Besides, you’ll be able 

to crack protection mechanisms that prevent users from unauthorized copying 

of protected discs. 
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Yellow Book 
Mode 1 
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Mode 2 

XA Mode 2 
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12 4 2048 4 8 276 
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Fig. 1.9. Sectors of different types 
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Thus, if you are not too bored with the pure theory, let’s continue with our efforts. 

In order to, hopefully, bolster your inspiration, I’ll just point out that these theoretical 

considerations will soon come to an end, and we will embark on the captivating proc¬ 

ess of investigating the disc ’’under the microscope.” 

□ The synchronization field contains the following sequence: 

OOh FFh FFh FFh FFh FFh FFh FFh FFh FFh FFh OOh, and serves as an indicator 

of the sector’s starting point. 

□ The Header field contains four bytes, the first three of which are occupied by the 

physical address of the current physical sector address, specified in the following 

format: minutes:seconds:frames. The final, fourth, byte determines the format 

of the remaining part of the sector (mode). If mode == 0, then the remainder of 

the sector if mode == 0 this shall mean that all bytes in positions 16 to 2,351 

of the Sector are set to OOh and read without any additional processing. 

If mode == 1, then the remainder of the sector appears as shown in Fig. 1.10 

(which we are discussing presently). Naturally, there are also other modes. 

However, because they are not very common, we won’t engage in a discussion of 

this topic. Interested readers can find all of the required information in the ap¬ 

propriate specifications. 

□ 2,048 bytes of user data area, as its name suggests, represent the useful informa¬ 

tion. 

□ The four-byte EDC field contains the sector checksum, calculated according to 

the following polynomial: P(x) = (x16 + x15 + x2 + 1) x (x16 + x2 + 1). At the 

same time, the least significant parity bit (x°) is written into the most significant 

bit of the checksum, and computation of the checksum starts from the least sig¬ 

nificant data bit. 

□ The auxiliary Intermediate field stores eight bytes filled with zeroes. To be honest, 

I don’t quite understand how it is used (for all appearances, it is not used at all, or, 

at least, it is clearly not used by protection mechanisms). 

□ P-parity and Q-parity fields, whose lengths are 172 and 104 bytes, respectively, 

contain so-called Reed-Solomon error-correction codes. The mathematical prin¬ 

ciples of their operation are described in detail in ECMA-130. We won’t concen¬ 

trate on these codes here, especially because for the vast majority of problems, 

there is no need to compute ECC codes. Most frequently, crackers simply fill these 

fields with random, senseless garbage, thus imitating an irrecoverable sector read 

error (or, simply speaking, emulating the physical defects of the disc surface by 

means of creating sectors that cannot be read logically). This approach is the most 

appropriate for cracking protection mechanisms that rely on physical defects of 

the discs surface. 
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Sync Croups, Merging Bits, and D5V 
Merging bits solve three important problems, without which it would be impossible to 
read information from a CD. 

First, merging bits prevent conflict situations from arising. These conflict situations 
can occur at the junction point of two EFM words, the first of which terminates with 
a one, and the second of which also starts with a one (Fig. 1.11). Because two binary ones 
(each of which corresponds to the transition from pit to land or from land to pit) must 
be separated by at least two zeroes, this combination is considered a violation. The drive 
simply won’t notice that something is present here (the length of one pit/land is consid¬ 
erably smaller than the diameter of a focused laser trace). Therefore, to detect this relia¬ 
bly, its length must be increased to at least 3T (see Fig. 1.12 for more details). On the 
other hand, if the "tail” of one EFM word consists of eight successive binary zeroes, and 
the following EFM word starts with the same sequence of 8 zeroes, we will have the chain 
comprising 16 zeroes. When reading such a chain, an error will occur, since according to 
the standard, there must be no more than eleven zeroes between two binary ones. 
Otherwise, the length-detection error will become too extreme. If you haven’t quite 
grasped the idea, just take a map and try to measure the distance between two cities using 
an ordinary ruler. This makes the nature of the problem a bit clearer. Briefly speaking, 
merging bits are chosen in such a way as to ensure that there are no less than three and 
no more than eleven zeroes between the two closest neighboring binary ones. 

First EFM word Second EFM word 

Conflict 
has been resolved 

1 0 0 0 0 1 0 0 1 0 0 0 0 1 j] fol°l°0^ 00 0 010 0 01 0 0 01 

First EFM word Merging 
bits 

Second EFM word 

Fig. 1.11. Principle of using merging bits 
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e 

Fig. 1.12. Form of a high-frequency signal generated as a result of reading 
and interpreting a sequence of pits and lands 

Second, merging bits prevent the occurrence of erroneous sync groups. The sequence 

of bits that make up a sync group (for reference, this is 100000000001000000000010) can 

only occur in the frame header, and, therefore, serves as a kind of specific indicator of 

its starting point. When the read head moves across the spiral track to find the speci¬ 

fied sector, it has to use some method to detect its current location (i.e., the starting 

point of a frame, the middle of a frame, or even the middle of the EFM word). 

The reading device passes the stream of digital data through itself until it encounters 

the next sync group. When a sync group is encountered, the intellectual circuitry of 

the CD-ROM drive draws the conclusion that this point is actually nothing other than the 

starting point of a new frame! Just imagine the confusion if false "parasitic" sync groups 
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were allowed to appear in the middle of a frame! In fact, without merging bits, this 

would occur on a regular basis! For example, consider the following EFM words: 

10000000000100 and 00000000100100. If these words are "glued" together, a false 

"parasitic" sync group appears (the digits forming it are in bold). Any attempt at 

reading such a frame would cause a crash. Merging bits that connect such EFM words 

allow us to avoid these situations. 

Third, look at the illustration shown in Fig. 1.12 — the CD has no other mark¬ 

ings except for the spiral track comprising the sequence of pits and lands. Fast alter¬ 

nation of pits and lands generates a HF (High Frequency) signal, shown in graph (b). 

This signal is important for holding the read head on the spiral track because there 

is no other method for distinguishing the track between inter-track intervals. An¬ 

other complication relates to the lack of a reference signal (or decision signal, as it is 

called in the standard), without which the read head cannot reliably distinguish dark 

surface areas from light areas. A precise quotation from the standard is provided 

below: "The information contained in the HF signal is extracted in the form of the po¬ 

sitions of the crossings of the HF signal with a decision level Ip. This decision level Ip is 

the level in the middle of the extreme values of I3 (I3 is the signal level corresponding to 

the maximum frequency of pit and land alternation). ” 

Now, imagine what will happen if in some section of a spiral track there is 

a considerable excess of pits in relation to the number of lands, or vice versa. 

Instead of an alternating high-frequency signal, the drive will produce a direct 

current of a high or low level. Under conditions where there is no decision signal, 

the drive will experience considerable difficulties in detecting which is which! 

In other words, within one frame the number of pits and lands must be approxi¬ 

mately equal. 

How can this balance be achieved? After all, we cannot write strictly ordered se¬ 

quences to the disc. Furthermore, even a brief glance at the EFM code table is suffi¬ 

cient to show that the zeroes predominate over the ones. Whatever EFM sequences 

we write, it is simply impossible to achieve the necessary "quorum" of ones! But 

there is no direct correspondence between bits and pits (lands). This means that the 

binary zero can be encoded both by a pit and a land! Assume that we are writing the 

following EMF sequence to the disc: "10000000100000". Despite the evident excess 

of binary zeroes, this EMF code contains an approximately equal number of pits and 

lands (Fig. 1.13, a). 

To compute this ratio more precisely, a special value was introduced, known as 

the DSV (Digital Sum Value). This value is computed in the following way: initially, 

the DSV is equal to zero, but each next pit increases it by one, while each land 

decreases it by one. In particular, for an EFM sequence such as "10000000100000", 

the DSV value is equal to two (Fig. 1.13, a). Note that this is 2 rather than "-2", since 
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we are interested only in the absolute value of the number, while its being positive 

or negative is of no importance (in fact, if this sequence started from a land rather 

than a pit, we would get the inverse result — eight’’+’’ and six ’’-’’). 

a 100000001 0 

-.+ + 
000 6 0001 0010000 
+ + + +++_ - - + + + + + 

0 0 0 
+ + + 

C0001 00100000001 00000 1 0 010000000 
+ ++ - - - ++ + + + + + +- - - - - - + + + --. 

Fig. 1.13. Demonstration of DSV calculation 

According to the standard, the DSV computed for the entire frame must fall 

within the interval from 2 to 10, otherwise, there will be problems in reading the sector 

(if the read operation were even possible). Note that not all EFM codes are character¬ 

ized by a low DSV value. For instance, consider the following — "OOOIOOIOOOOOOO", 

for which the DSV is 8. In fact, although this value formally satisfies the standard re¬ 

quirements, if there are at least ten such sequences on a disc, the DSV value will grow 

catastrophically to a value of 80!!! 

Decreasing the DSV level to an acceptable minimum is the third task that is carried 

out by merging bits. How do they do this? Fook at the illustration shown in Fig. 1.13, b. 

Here, one EFM word having a large positive DSV is followed by another EFM word 

with a high DSV. As mentioned above, the DSV is an unsigned value, or, to be more 

precise, the actual DSV sign (negative or positive) of an EFM word doesn’t depend on 

the word itself, but rather it depends on the word’s context! Fet us consider the exam¬ 

ple of the following degenerate sequence: ”...00000000...”. Since binary zero corre¬ 

sponds to the lack of a change in this location on the disc surface, this sequence can be 

encoded both by eight lands or by eight pits. Now, let us assume that we are writing 

two EFM words, both of which have a significant excess of lands. Is it possible to turn 

the lands of the second word into pits? This is, in fact, possible, provided that at least 

one of the three merging bits is equal to one. As we know, binary one corresponds to 

the transition from land to pit (or from pit to land). Therefore, the second EFM word 

will start from a pit, and its DSV will become strongly negative (in other words, there 

will be an excess of pits over lands). As a result, the EFM word with a strongly positive 
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DSV will be, to some extent, compensated for by an EFM word with a strongly nega¬ 

tive DSV. Thus, the total DSV will be close to zero (Fig. 1.13). 

Do application programmers need to know all of these details of physical encod¬ 
ing, you might ask? The answer is straightforward: The requirements for merging bits 

are mutually exclusive and can produce very unfavorable EFM sequences with un¬ 
avoidably high DSVs. Such a sequence is shown in Fig. 1.14. The first EFM word is 

terminated by 8 zeroes. Since sequences comprising ten or more consecutive zeroes 
are disallowed, either the first or the second of the merging bits must necessarily be set 
to 1. However, in this case, the next EFM word will take strongly negative DSV value, 
for which we cannot compensate. This is because of the fact that between the second 

and the third EFM words only a single combination of merging bits is possible — 
"000", while any other combination will violate the rule that no less than two zeroes 
must be present between two neighboring binary ones. As a result, the third EMF 
word also has a strongly negative DSV value. If we fill the entire sector with this se¬ 

quence, its total DSV will be catastrophically negative! 

010001000000001001000000000100100001000100000000 
_ + ++ -- - --- - --+ + + +- 

Fig. 1.14. EFM sequence with catastrophic DSV 

To prevent the occurrence of such sequences, all data being written to the disc are 

previously scrambled, i.e., transformed into a pseudo-random sequence that resembles 
"white noise" in its characteristics. Accordingly, when performing data reading, an in¬ 
verse operation is carried out. However, if desired, it is possible to bypass the scrambler! 

Some protection mechanisms do exactly this (see Protection Based on Weak Sectors"). 

Scrambling 
Before writing the data to the disc, sector contents undergo a scrambling operation. 

Scrambling means that the data is transformed into a pseudo-random sequence that 
resembles "white noise" in its characteristics. This eliminates the unpremeditated gen¬ 

eration of regular sequences with high DSV values, because such sequences are consid¬ 

ered unfavorable from the point of view of the read device. As a result, the reading of 

such sequences is extremely unstable (for more details see ’’Sync Groups, Merging Bits, 

and DSV”). 

Scrambling is applied to all fields of a sector, except for the 12-byte sync group at 

its start. In fact, if we also scramble the sync group, how would we find it later in the 

data stream? In total, this operation will produce 2,340 bytes of data (Fig. 1.15). 
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12 Sync 
bytes 2,340 scrambled 8-bit bytes 

0 11 12 2,351 

Fig. 1.15. Sector format from the point of view of the scrambler 

Scrambling is carried out by the CD-R/CD-RW drive at the hardware level, and is 
absolutely transparent for the programmer. Accordingly, when reading a sector, an in¬ 

verse procedure is carried out, i.e., descrambling. As a result of this operation, the "white 

noise" is removed from the sector, which is then converted back to its initial form. 
The transparency of the scrambling mechanism creates a false impression, mean¬ 

ing that its algorithm seems absolutely useless for the programmer and only of any 

interest to hardware designers. In reality, however, this is not the case. Since scrambler 

was designed specifically for the elimination of unpremeditated occurrences of unfa¬ 

vorable sequences, the ability to create these sequences on purpose will allow us to cre¬ 

ate discs that are unreadable at the hardware level. What next? — you might ask. Why 

choose such a complicated way of creating an unreadable disc? Why not just take 

a disc, scratch its reflecting layer with a sharp needle, so that it will also be unreadable? 

After all, it is also possible to smash it with a paperweight or a sledge hammer. 

All joking aside, there is a point to this. The point is that, as a result of the presence of 

correcting codes, it is possible to create an unfavorable sequence, compute the cor¬ 

recting codes corresponding to it, and write this sequence to the disc in a slightly 

modified form in such a way as to ensure that, on one hand, it changes from an unfa¬ 

vorable to a favorable one, and, on the other hand, that after passing through Reed- 

Solomon decoder, it is restored into its initial (unfavorable) form. Any attempt to 

copy such a disc using a standard CD-copying program will fail, because the program 

will write an unfavorable sequence "as is." When an attempt is made to read this se¬ 

quence, an error will occur! Promising, isn’t it? More details on this technique will be 

provided in Chapter 6, which is dedicated to protection mechanisms based on weak 

sectors. For the moment, let’s concentrate on the scrambler. 

According to the ECMA-130 standard, the scrambling algorithm appears as fol¬ 
lows: "Each bit in the input stream of the scrambler is added modulo 2 to the least sig¬ 

nificant bit of a maximum-length register. The least significant bit of each byte comes first 

in the input stream. The 15-bit register is of the parallel block synchronized type, and 

is fed back according to polynomial x15 + x + 1. After the Sync of the Sector, the register 

is pre-set to the value 0000 0000 0000 0001, where the ONE is the least significant bit” 

(Fig. 1.16). 
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Q0000000000 00001 ^- Pre-setting 

Output data 
► 

Listing 1.1. The software implementation of the scrambler shown in Fig. 1.16 

UpdateShiftRegister() 

int i; 

for(i =0; i < 8;i++) 

{ 

int hibit = ((ShiftRegister & 1)A((ShiftRegister & 2)>>1)) << 15; 

ShiftRegister = (hibit | ShiftRegister) » 1; 

} 

void Scramble() 

int i; 

for (i=12;i<2352;i++) 

{ 
Scrambled[i] = Scrambled[i] A (ShiftRegister&OxFF); 

UpdateShiftRegister(); 

} 

Does this make sense to you? It didn’t to me either.... at least until I used disas¬ 

sembler and carried out reverse engineering of the Clone CD program. As a matter of 

fact, Clone CD is an excellent tool for bypassing protection mechanisms based on 

weak sectors. Because of this, it must contain its built-in scrambler. 

Among the functions exported by the ElbyECC.dll (supplied as part of Clone CD), 

there is one very interesting function: RawSrcambleSector, the disassembled listing of 

which appears as shown in Listing 1.2. 



32 Part I: CD Anathomy 

Listing 1.2. An example of the implementation of the scrambling algorithm 
borrowed from the Clone CD program 

.text:100020E0 RawScrambleSector proc near 

.text:100020E0 

.text:100020E0 arg_0 = dword ptr ' 4 

.text:100020E0 

.text:100020E0 mov eax, [esp+arg 0] ; Loading the passed argument into EAX 

.text:100020E4 mov ecx, offset ScrmblrTbl ; ECX contains pointer to ScrmblrTbl. 

.text:100020E9 add eax, OCh ; Skipping 12 bytes of sync sequence 

.text:10002OEC push esi ; Saving ESI 

.text:10002OED push edi ; Saving EDI 

.text:100020EE sub ecx, eax ; Computing delta 

.text:100020F0 mov edx, 249h ; 2340 / 4 bytes for scrambling 

.text:100020F5 

.text:100020F5 loc_100020F5: ; CODE XREF: RawScrambleSector+22j,j 

.text:100020F5 mov esi, [ecx+eax] ; Take next DWORD from the table 

.text:100020F8 mov edi, [eax] ; Next DWORD for scrambling 

. text: 100020EA xor edi. esi ; XOR’ing 

.text:100020FC mov [eax] , ed ; Saving the result 

.text:100020FE add eax, 4 ; Next DWORD 

.text:10002101 dec edx ; De-incrementing the counter 

.text:10002102 jnz short loc_100020F5 ; Looping 

.text:10002104 pop edi ; Restoring EDI 

.text:10002105 pop esi ; Restoring EDI 

.text:10002106 

.text:10002106 

retn 

RawScrambleSector endp 

; Returning from the function 

Analysis of the disassembled listing shows that the developers of Clone CD pre¬ 

ferred a fast table algorithm to the tedious and resource-consuming fuss of working 
with a polynomial. This algorithm is reduced to superimposing a pseudo-random 
sequence over the sector being scrambled, which is carried out by means of the xor 

operation. The actual result is nothing other than a disposable Vernam cipher, which 
has a length of the private key equal to the length of the sector part being scrambled 
(2,340 bytes). Implementation of this algorithm in a high-level language will appear 
approximately as follows: 

Listing 1.3. An example of the application of the table scrambling algorithm written in C 

RawScrambleSector (char *raw_sector) 

{ 
int a; 

DWORD *p; 

DWORD *MyScramblerTable = (DWORD *) ScramblerTable; 
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p = (DWORD*)(raw_sector + 12); 

for (a = 0; a < 2340 / 4; a++) 

{ 
p[a] A= MyScramblerTable[a]; 

} 

Now all that remains is to look into the pseudo-random sequence itself. The first 

eight members of this sequence (which were retrieved by the disassembler from 
Clone CD) appear as follows: 

Listing 1.4. The first eight members of the pseudo-random sequence used for 
sector scrambling by Clone CD 

dd 060008001h 

dd 01E002800h 

dd 006600880h 

dd 08lFE02A8h 

dd 028606080h 

dd 0889ElE28h 

dd 0AAAE6668h 

dd 0E0017FFCh 

The full table is too large to be provided in its entirety here. Even printed in the 
smallest font, it would consume the entire page — more than 4,000 characters). 

Therefore, it is more interesting to discover the pattern, according to which the mem¬ 

bers of this sequence are related to one another and recreate the algorithm that com¬ 

putes all of the members of the sequence if we know the first. This small programming 
puzzle is not as difficult as it might seem at first glance. Sure, a brief glance at the first 

8 members of the pseudo-random sequence won’t provide any clues to its nature. 

In fact, the numbers changed chaotically and seem to bear a close resemblance to the 

"dancing men” mystery solved by Sherlock Holmes. In this case, however, frequency 

analysis is useless, and this problem cannot be solved by brute force. The good news, 

however, is that we are not trying to solve this problem from scratch! First, we know 

for sure that scrambling is carried out by 16-bit words (the width of the scrambling 

register is exactly 16 bits). Because of this, we must analyze words, and not double 
words. The fact that XORing is carried out by 32-bit blocks doesn’t change anything 

because xor is a bitwise operation. Therefore, the bit width of the operands has no 
influence on the final result! Second, the most convenient way for analyzing patterns is 

to do so at the bit level, because this level is precisely the one, at which this pseudo¬ 

random sequence is generated. 
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The script shown in Listing 1.5 automatically converts all table elements into 16- 

bit words displayed in binary format. Start IDA, press <F2>, and load the file contain¬ 
ing this script. Then, move the cursor to the first element of the table, press 

<Shift>+<F2>, and enter the following command: x2bin (ScreenEAO , screenEA 0+2340, 2). 

Pressing <Ctrl>+<Enter> (or simply <Enter>, if you have an earlier IDA version) will 
start the script for execution. 

Listing 1.5. The IDA-C script converting table elements into binary code 

// x_start - the starting address for conversion 

// x_len - the number of bytes for conversion 

// x_pow - the number of bytes in a single element 

static x2bin(x_start, x_end, x_pow) 

{ 
auto a,p; 

for(p=x_start;;) 

{ 
// Converting into the element of the required width 

if (x_pow == 1) MakeByte(p); else if (x_pow == 2) MakeWord(p); else 

if (x_pow == 4) MakeDword(p); else return 0; 

// Converting into binary code 

OpBinary(p, 0); 

// Next element 

p = p + x_pow; 

// Exit, if everything is done, 

if (p>x_end) break; 

} 

} 

The "updated" pseudo-random sequence of the scrambler will appear as follows 
(Listing 1.6 provides its first 16 elements). 

Listing 1.6. A pseudo-random sequence written in the form of 16-bit words 
displayed in binary format 

dw 1000000000000001b 

dw 0110000000000000b 

dw 0010100000000000b 

dw 0001111000000000b 

dw 0000100010000000b 

dw 0000011001100000b 

dw 0000001010101000b 
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dw 1000000111111110b 

dw 0110000010000000b 

dw 0010100001100000b 

dw 0001111000101000b 

dw 1000100010011110b 

dw 0110011001101000b 

dw 1010101010101110b 

dw 0111111111111100b 

dw 1110000000000001b 

Now, the pattern can be detected easily (this shows how important it is to format 
the listing correctly). The bits of each of the next elements are moved one position to 
the right, nestling up to the logical "East" and making a kind of bit "stream", which in¬ 
creases its size linearly in its diagonal flow (each next element adds one bit to it). 
However, at a certain stage, it is suddenly "broken" into a set of smaller "streamlets," 
interlacing and forming a indecipherable mess. Nevertheless, the "physical" principles 
forming the foundation of this pattern are still hidden in the darkness and the mist. 
So, there is nothing left for us to do other than to resort to the blind trial method, 
hoping for a little intuition and luck. 

Now what do we know? Unfortunately, there is not a glut of information... 
The scrambler XORs the contents of its internal register with the flow of data being 
scrambled. After each scrambled 16-bit word, it modifies the value of this register... 
but how? Let’s take two adjacent elements of our pseudo-random sequence and try to 
guess the sequence of operations that generates the next element. There are only a few 
possible answers: shift, xor, and, or or. It is unlikely that the creators of the CD-ROM 
would have used anything else in the scrambler. 

Let’s, therefore, take the starting element (i.e., the number onooooooooooooob) that the 
scrambler has created from ooioiooooooooooob in some yet unknown way. Clearly, there has 
been a shift. To compensate for this, let’s shift the next element to the right by one and write 
the new value under the original (as if were carrying out modulo-2 addition): 

dw 011000000000000b 

dw ???????????????b X0R 

dw 010100000000000b 

All but the most lazy readers will be able to determine the source item here: 

onoooooooooooob xor oioiooooooooooob gives us. ..oonooooooooooob. But wait! This is 
our unknown item shifted one position to the right! Let’s consider how the next pair 

of numbers would behave: 

dw 010100000000000b 

dw ???????????????b X0R 

dw 0001111000000000b 
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Well, 010100000000000b xor oooimooooooooob gives us a value of 
001010000000000b. Consequently, we can see that we have chosen the right method! 
After quickly writing the simplest script computing the next members on the basis 
of those preceding them, we can determine the correct results for all of the members 

of the sequence, running from the second member to the seventh, inclusively. After 
that, however, our theory will cease to work. In fact, the theory and practice will go 

different ways, like a married couple after a divorce. Quite unexpectedly, the binary 
one will appear in the most significant bit. In the next iteration, it will generate a para¬ 
sitic "streamlet." Is it possible that the bit shift in the word takes place cyclically, i.e., 
that the least significant bit is periodically carried upwards? An attempt to compute the 
next member refutes this theory. 

Having spent a couple of hours trying to find information on polynomials and the 
specific features of their implementation in the literature available to me, I couldn’t 

find anything out. Having finally decided that, so to speak, hasty climbers have sudden 
falls, I simply produced a printout of the first hundred members of our pseudo¬ 
random sequence and manually computed the next element for each on the basis of 
the one that preceded it. Having completed this operation, I simply marked all of the 
exceptions that I detected. It turned out that the 14th and 15th bits (starting from 
zero) are spontaneously inverted from time to time. All of the other bits behaved in 
complete accordance with the theory. 

Now, all that remained to do was to detect, under which conditions these bit "mu¬ 
tations" take place. I discovered pretty quickly that if the first bit (counting from zero) is 
set to 1, then 15th bit of the same member is inverted. This was fairly obvious, especially 
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Fig. 1.17. Computation of the scrambling sequence 
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on the printout. Discovering the second exception from the rule was a little more diffi¬ 
cult: if the bit 0 of the computed member is set to 1, then 15th and 14th bits of the 
same member are inverted. Accordingly, if both the Oth and 1st bits are set to 1, then 
only 14th bit is inverted, due to the double inversion (Fig. 1.17). That’s it! Now we can 

compute the entire pseudo-random sequence! 
The source code of the program generating the scrambling sequence is provided 

below. Naturally, it isn’t a masterpiece of optimization. It is, however, illustrative 
enough. 

Listing 1.7. [/etc/RawScrambler.c] The program for computing the scrambling 
sequence 

/*- 
★ 

* GENERATES THE SEQUENCE PCJR CD SCRAMBLER 

★ ======================= 

★ 

* build 0x001 @ 07.06.2003 

-*/ 

#include <stdio.h> 

// Check fragment of the real scrambling sequence for checking the program 

//- 
//0x8001,0x6000,0x2800,OxleOO,0x0880,0x0660,0x02a8,0x81f e,0x6080,0x2860,0xle28, 

//0x889e, 0x6668 , Oxaaae, 0x7ffc, OxeOOl, 0x4800 , 0x3600 , 0x1680 , OxOeeO, 0x04c8,0x8356 , 

//0xel7e, 0x48e0,0x3648,0x96b6, Oxeef 6,0xccc6,0xd552,0x9ffd, 0xa801,0x7eOO, 0x2080, 

printf_bin(int a) 

{ 
int b; 

for (b = 15; b >= 0; b—) printf ("%x", (a & (l«b) ) ?1:0);printf (" %x\n",a); 

} 

main() 

{ 
int a, tmp; 

int reg = 0x8001; // The first element of the scrambling sequence 

for (a =1; a < 1170/* The scrambled sector part length in words*/; a++) 

{ 

// Printing 

printf_bin(reg); 

if ((a % 8) = 0) printf (".%03d.\n",a /8) ; 

// Modulo-2 addition with shift 
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tmp = reg » 1; tmp = reg A tmp; reg = trap » 1; 

// processing polynomial xA15+x+l, e.g., 1«15 + 1«1 + 1«0 

if (reg & 1«1) reg = reg A (1«15); 

if (reg & 1«0) reg = reg A ((1«15) | (1«14)); 

} 

} 

FI-, F2-, and F3 Frames and CIRC Encoding 
The next ’’production cycle” starts with chopping the hurriedly scrambled sector into 
24-byte "slices" of data called FI-frames. A simple computation shows that one sector 

with a length of 2,352 bytes can be sliced into exactly 98 FI-frames. 
FI-frame. The structure of FI-frames is extremely simple: each frame consists 

of 24 bytes (12 words), numbered from 0 to 23 and sequentially mapped to the appro¬ 

priate cells of the sector (Fig. 1.18, a). At the same time, the boundaries of frames and 
sectors do not necessarily have to match. Therefore, the sector can start from any of 
the following positions of the first frame: 0, 4, 8, 12, 16 or 20 (Fig. 1.18, b). The starting 
position of the sector in the FI-frame isn’t stored anywhere (after all, there is no place 
to store it). Instead, the starting position of the sector is recognized by the presence of 
a sync group, which is hard not to notice! 

Sector 

Fig. 1.18. Scheme of mapping sectors to frames 
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The standard provides a rather vague description of the process for mapping sec¬ 
tors to frames. However, it does tell us that the starting point of the next sector directly 
follows the end of the previous sector (Byte 2,351 of a sector is immediately followed by 
byte 0 of the next sector). Consequently, the change in the starting position of the sector 
doesn’t ’’wrap” the sector’s tail to the starting point of the first frame. Instead, the sec¬ 
tor tail is carried into the next frame. Briefly speaking, if the starting position of the 
sector is not equal to zero, then each 49th frame simultaneously contains the bits of 
two sectors. As is easy to see, these will be the first and the last frames of the sector, 
and, since one sector contains 98 frames, 98/2 == 49. 

The change of the starting position of the first byte of the sector within a frame 
results in considerable changes in its DSV (see "Sync Groups, Merging Bits, and DSV”). 
As a result, a CD-R recorder is able to "normalize" sectors that have catastrophically 
high DSV values. The drive’s firmware must choose the starting position with the 
smallest DSV value or, at least, ensure that the DSV value doesn’t exceed the allowed 
limits. Unfortunately, most low-end CD-R recorders are too simple for coping with 
this task. They always start the frame from byte 0 of the sector. As a consequence, the 
disc copy at the frame level can significantly differ significantly from the original. De¬ 
spite the fact that it is impossible to determine the starting position programmatically 
(standard CD-ROM drives refuse to disclose this information), nothing is easier for 
the developers of protection mechanisms than forming a weak sector with a cata¬ 
strophically high DSV value for the starting position 0, but quite normal for all other 
starting positions (see nProtection Mechanisms Based on Weak Sectors"). After this, it is 
practically impossible to copy such a sector using standard writing equipment, because 
few CD-ROM drive models will be able to read the sector with the high DSV. For ex¬ 
ample, my ASUS-50x seems to be able to do this. However, it doesn’t do it reliably, 
and, of course, it can’t do it for every disc. At the same time, none of the recorders, 
of which I am aware, allows you to choose the starting position manually (this possi¬ 
bility, at least, is not provided for by the standard, and at the same time, CD-RW 
drives cannot yet operate at a level this low). It is, of course, possible to use a little 
cunning and to corrupt several bytes of the sector intentionally, without damaging the 
error-correction codes (even minor changes introduced into the source data will result 
in monstrous changes to the DSV), so that the drive’s firmware will return the cor¬ 
rupted data to its initial state on the fly. However, if the protection mechanism isn’t 
completely stupid, it will easily distinguish this kind of rough imitation from the origi¬ 
nal. After all, when reading raw sectors, all of the tweaks that have been performed 
with error-correcting codes will be disclosed immediately! 

At the same time, most CD-RW drives (if not all of them) carefully trace the DSV 
value and correctly choose the starting position. Well, this seems logical enough — 
the contrast range of the CD-RW media is too low and, therefore, the requirements 
for DSV value here are considerably more stringent than for CD-R media. Hence, 
if a protected disc cannot be copied on CD-R, try to copy it into CD-RW. By this 
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I mean to use the CD-RW drive to copy the protected disc onto a CD-RW disc, 
because some CD-RW recorders (for example, Plextor, PHILIPS) always start the 
frame from 0 byte of the sector when writing to CD-R discs, but at the same time, 
determine the starting position of the sector correctly when writing to CD-RW media! 
Of course, this is an irritating circumstance, but noting can be done about it. 

The order of bytes in the sector is different from the order of bytes in the FI-frame. 
This means that when mapping the sector contents to a frame, even and odd bytes are 

swapped (Fig. 1.19). This mixing is intended to reduce the negative influence of disc 
defects that involve two adjacent bytes simultaneously. 

0l2 34567 89 

The software method of slicing a sector into frames is provided in the listing be¬ 
low. Here, the sector is the pointer to the initial sector, and Fl_frames is the array of 98 
frames, each containing 24 bytes: 

Listing 1.8. An example demonstrating the technique for forming FI frames 
(for the case, in which the frame and sector boundaries match) 

/* Generate Fl frames */ 

for (a = 0; a < 98; a++) 

{ 

for (b = 0; b < 24; b++) 

{ 

Fl_frame[a][b]=((*sector&0xffOOff00UL)>>8)|((*sector&0x00ffOOffUL)<<8); 

} 

F2- frame. Newly created Fl-frames are supplied to the input of a special coder 

(Cross-Interleaved Reed-Solomon Coder, also known as CIRC coder), where their 
24 bytes are complemented by 8 bytes of the Reed-Solomon checksum. As a result, 
F2-ffames with a length of 32 bytes are produced at the coder output. 
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The contents of the bytes forming FI-frames remain unchanged at the bit level 
("The bit pattern of each of the 24 8-bit bytes of an FI-Frame remains unchanged"). 
However, the bytes themselves are redistributed over 106 F2-ffames. As a result, 
FI-frames are ’’spread” over the spiral track, which makes them less sensitive to radial 
scratches on the disc surface and any other local defects. 

Mixing is achieved by means of so-called delay lines, and is carried out according 
to the following scheme (Fig. 1.20). The first delay section ’’swallows” the Fl-ffames 
supplied to its input. These frames are already split into 12 two-byte words, where the 
least significant and most significant bytes are designated by the letters A and B, 
respectively. The words are numbered sequentially from W12n to W12n+ll. Thus, 
the first byte of the frame has the number ’’ W12n,A'\ while the last one is numbered 
”W12n+11,B”. 

24 8-bit bytes 
from FI-frame 
grouped into 
12 16-bit words 

Delay of 
2 bytes 

Generation 
of four 
parity bytes 

Delay Generation Delay 32 8-bit 
lines of four lines bytes 

parity bytes 

W12/7,A 

W12/7,B 

Wl 2/7+1 ,A, 

Wl 2/7+1 ,B i 

Wl 2/7+2, A i 

Wl 2/7+2, B > 
W12/7+3,A> 

Wl 2/7+3, B i 

Wl 2/7+4, A 1 

Wl 2/7+4, B» 

Wl 2/7+5, A* 

Wl 2/7+5, B 1 

Wl 2/7+6, A *- 
Wl 2/7+6,B>- 

W12/7+7,A►- 

W12n+7,B^ 

W12/7+8,A> 

Wl 2/7+8, B> 

Wl 2/7+9,A* 

Wl 2/7+9, B> 

Wl 2/7+10,A > 

Wl 2/7+10,B> 

Wl 2/7+11,A > 

Wl 2/7+11 ,B * 

-(23- 

Wl 2/7-24, A [ 

Wl 2/7-24,B 

Wl 2/7+4-24, A 

\ [ Wl 2/7+4-24,B 

\\// Wl 2/7+8-24. A 

Wl 2/7+8-24,B 

\V/\)/C 
Wl 2/7+1-24,A 

W iL Wl 2/7+1-24,B 

Jfytv // Wl 2/7+5-24, A 

MJr Wl 2/7+5-24,B 

Wl 2/7+9-24, A 

t Wl 2/7+9-24, B 

| 
Wl 2/7+2,A 

Q12/7 

Q12/7H 

Q12/74 
Q12/7H 

H 1 

2 i- 
1-3 

* i 
Wl 2/7+2,B 

Wl 2n+fi A 

jUF% Wl 2/7+6,B 

-N\ Wl 2/7+10 A IK\ A Wl 2/7+10.B 

Wl 2/7+3,A 

Wl 2/7+3 B 

// \ VW12/7+7.A 

_/ \wi 2/7+7,B 

Wl 2n+11 A 

!W12/7+1 l',B 

Interleaving 

<TD> 

<3D> 

<4D> 

<30 
<30 
<7D~> 

<90 
-cTnrO- 
<Tm> 

OD> 
<330 
<T8D> 

<25P> 
<zld> 

<24D> 

Ct encoder 

P12/7 

PI 2/7+1 

PI 2/7+2 

PI 2/?+3 

KT> 

-g> 

G> 

m. 

<T> 

■CD- 

<1> 

<T> 

d> 

a> 

<T> 

a> 

d> 

<T> 

->W12/7-12(3), A 

->W12/7-12(D+2),B 

—►Wl 2/7+4-12(2D+3),A 

->W12/7+4-12(3D+2),B 

“►Wl 2/7+8-12(4D+3),A 

->W12/7+8-12(5D+2),B 

-►Wl 2/7+1 -12(6D+3),A 

-►Wl 2/7+1 -12(7D+2),B 

-►Wl 2/7+5-12(8D+3),A 

-►Wl 2/7+5-12(9D+2),B ° 

-► Wl 2/7+9-12(10D+3),A 10 

->W12/7+9-12(11 D+2),B ^ 
12 
13 

14 

15 

► Q12/7-12(12D+1) 

012/7+1-12(13D) 

Q12/7+2-12(14D+1) 

Q12/7+3-12(15D) 

W12/7+2-12(16D+1),A 16 

Wl 2/7+2-12(17D),B 17 

W12/7+6-12(18D+1),A 18 

Wl 2/7+6-12(19D),B 19 

Wl 2/7+10-12(20D+1 ),A 20 

Wl 2/7+10-12(21 D),B 21 

Wl 2/7+3-12(22D+1 ),A 22 

Wl 2/7+3-12(23D),B 23 

W12/7+7-12(24D+1),A 24 

W12/7+7-12(25D),B 25 
Wl 2/7+11 -12(26D+1 ),A 26 

Wl 2/7+11-12(27D),B 27 

PI 2/7-12 

PI 2/7+1 

P12/7+2-12 

PI 2/7+3 

28 

29 

30 

31 

Fig. 1.20. Process of encoding bytes 
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The first delay line splits the frame contents into two groups of words, one of which 

(W12n+2, W12n+3> W12n+6> W12n+7, W12n+10, W12n+ll) is supplied unhindered to 

the output, while the second (W12n+0, W12n+ly W12n+4, W12n+5, Wi2rc+8, W12n+9) 

is forcibly delayed during the processing of the next two FI-frames. Words starting from 

the numbers W12n+1> ..., W12n+10 are carefully mixed according to a strictly defined 

scheme. In fact, a picture is worth 128 K words, because it is much easier to draw it 

graphically (Fig. 1.20) than describe it using normal language. 

Mixed words are supplied to the input of the C2~encoder, where they are comple¬ 

mented by four parity bytes computed according to the Reed-Solomon codes and se¬ 

quentially numbered from Q12n+0 to Q12n+3. 

The words complemented by parity Q-bytes are then supplied to the second delay 

line, where they are delayed for the length of the time interval required for processing 

FI-frames and ranging from ID to 27D (where D is equal to 4). 
The words that have finally been freed are sent to the next Reed-Solomon coder, 

designated as "C2", where they are supplemented with four parity bytes, sequentially 

numbered from Pri+0 to Pri+3. This kind of two-stage scheme of redundant encoding 

reduces the probability of irrecoverable errors considerably, because between C\ and 

C2 coders, the data being processed are carefully mixed! 
Finally, the third delay line delays all even bytes in the data flow for the time re¬ 

quired to process a single FI-frame. That’s it! The newly created F2-ffame then exits 

the output of the third delay line. This frame comprises 32 bytes sequentially num¬ 

bered from 0 to 32: 24 bytes of payload, 4 Q-bytes of parity and 4 P-bytes of parity. 

At the same time, 24 bytes of useful data contained in the F2-ffame include the data 

of a large set of different FI-frames! In other words, you can’t consider the F2-ffame to 

be the FI-frame supplied with the checksum. 
When the data are read from a CD, an inverse process takes place (Fig. 1.21). First, 

the bytes being read pass the delay line that ’’grabs” even bytes for the interval required to 

process one frame. They are then supplied to the Q decoder, which checks the correct¬ 

ness of the checksum and tries, if necessary, to recover corrupted bytes. There is then an¬ 

other delay section (1D-27D Delay lines) and another decoder (C2 decoder), which re¬ 

cover whatever couldn’t be recovered by their predecessors. Finally, FI-frames that are 

ready for use leave the output of the last delay line. Further on, they are assembled into 

sectors. Sectors have already been covered, so we won’t repeat ourselves here. 
At such a level of redundancy, error-correction codes can recover up to 2 cor¬ 

rupted bytes per each 24/28-byte "slice" of the source data. If three or more bytes are 

corrupted, the decoder can only report an error, and is unable to recover the original 

contents of corrupted bytes. Still, it is possible to determine exactly which bytes were 

corrupted. Consequently, it might be possible to determine their approximate value 

by means of interpolation. Naturally, this technique of "recovery" is not suitable for re¬ 

covering data CDs. However, it produces satisfactory results for Audio-CDs. Even on 
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high-quality media, the number of irrecoverable errors is actually large enough. 

Therefore, CD drives must actively carry out their interpolation. Note that the vast 

majority of music lovers aren’t even aware of its existence. 

328-bit bytes Delay of 
1 bytes 

C., Delay C2 
decoder lines decoder 

Delay of 
2 bytes 

24 8-bit 
bytes 

-KT> 

4o> 
M-Q> 

H-QD- 

^kry 
*-ki> 

0 W12n-12(3),A 
1 W12n-12(D+2),B 
2 W12n+4-12(2D+3),A 

3 W12n+4-12(3 D+2), B 
4 W12n+8-12(4D+3),A 
5 W12n+8-12(5 D+2), B 
6 W12n+1 -12(6D+3),A 
7 W12n+1 -12(7 D+2), B 
8 W12n+5-12(8D+3),A 
9 W12n+5-12(9 D+2), B 
10 W12n+9-12(10D+3),A 
11 W12n+9-12(11 D+2), B 
12 Q12n-12(12D+1) 
13 Q12n+1-12(13D) 
14 Q12n+2-12(14D+1) 
15 Q12n+3-12(15D) 
16 W12n+2-12(16D+1 ),A 

17 W12n+2-12(17D),B 
18 W12n+6-12(18D+1 ),A 
19 W12n+6-12(19D),B 
20 W12n+10-12(20D+1), A> 
21 W12n+10-12(21 D),B ► _Q-y_ 

22 W12n+3-12(22D+1 ),A ► I 
23 W12n+3-12(23D),B 
24 W12n+7-12(24D+1 ),A >4- 
25 W12n+7-12(25D),B ► -Q> 
26 W12n+11-12(26D+1 ),A^—i- 
27 W12n+11 -12(27D),B ► ; ( i > 
28 P12n-12 >4- 
29 P12n+1 

-KT> 

H-Q> 

30 P12n+2-12 

31 P12n+3 

^KH> 
D=4 

W12/1-12(27D+3), A 
W12n-12(27D+3),B 
W12n +1-12(27D+3),A 

>W12n+1-12(27D+3),B 
W12 n +2-12(27D+3),A 
W12 n +2-12(27 D+3),B 
W12 n +3-12(27D+3),A 

W12 n +3-12(27 D+3),B 
W12n +4-12(27D+3),A 
W12n +4-12(27 D+3),B 
W12 n +5-12(27D+3),A 
W12 n +5-12(27 D+3),B 

W12n +6-12(27D+3),A 
2>-^ W12n +6-12(27 D+3),B 
23~^ W12 n +7-12(27D+3),A 

W12n +7-12(27D+3),B 
W12/1 +8-12(27D+3),A 
W12n +8-12(27 D+3),B 
W12n+9-12(27D+3),A 
W12/1 +9-12(27 D+3),B 

W12n +10-12(27D+3),A 
W12n +10-12(27 D+3),B 
W12n +11-12(27D+3),A 

W12n +11-12(27D+3),B 

De-interleaving 

Fig. 1.21. Process of decoding bytes 

First-generation CD-ROM drives intended for computers formally supported 
audio discs, and even managed to produce high-quality playback. However, any at¬ 
tempt to grab these discs and make a digital copy produced a result where the speakers 
issued continuous crackling sounds similar to those produced by old scratched vinyl 
gramophone records. While nostalgia isn’t necessarily a bad thing, the days of vinyl 
records are long gone. The main reason for this situation is that CDs produce consid¬ 
erably better sound quality, which doesn’t degrade with time, while records are inevi¬ 
tably decaying, even if you store them very carefully. Why, then, do our grabbed CDs 
become as crippled as records, also produce hissing and cracking sounds?. 

This occurs because early CD-ROM drives read Audio CDs ”as is,” and didn’t at¬ 
tempt to recover corrupted bytes when they occurred. Furthermore, they didn’t even 
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report the number of these bytes. As a result, application software didn’t have any in¬ 
formation and didn’t know what to interpolate! If the corruption involves the least 
significant bits of a byte, this might remain undetectable to the human ear (even that 
of a true music lover). However, if corruption involves the most significant bits, this 
corruption can be heard by the human ear as a sharp click, noticeable even for those 

who are hard of hearing. It would be possible to try and read the corrupted sector sev¬ 
eral times (in the hope that one of the reading attempts would prove successful) or to 

analyze the read data to find and ’’smooth” all sharp "peaks" and "pits." However, this 
is a half-measure, as most of you will understand! High-quality audio grabbing on 
such drives is virtually impossible. Moreover, some CD manufacturers, keen on pro¬ 

tecting their products from unauthorized copying, began to introduce a large number 
of irrecoverable errors into their products intentionally. As a result, these CDs can be 
read normally (even on computer CD drives), but any attempt to grab or copy them to 

CD-R inevitably failed. The sound quality was so horrible that it threatened to make a 
true music lover sick. The sound was even worse than that produced by an old- 
fashioned gramophone. 

The situation has begun to correct. Some contemporary CD-ROM drives are ca¬ 
pable of returning pointers to corrupted bits in the data flow. At the software level, 

this is achieved by passing the BEh (read cd) command with a nonzero value for the 

Error Flags field to the drive. For reference, this field is located in the first two bits of 
the 9th byte of the ATAPI/SCSI packet. The result of using this command will be 
illustrated by the /etc/RAW.CD.READ/aspi32.C2.c demo example. Those of you 

who would like to get more detailed information on this topic are recommended 
to read the Standard for DVD/CD-ROM drives, which can be found at the following 

address: http://www.stanford.edu/-csapuntz/specs/INF-8020.PDF (page 143). Now, 

let us concentrate not so much on a description of the format of the fields of 
the read cd command, but on C2-pointers themselves. Strictly speaking, these are not 
pointers at all, but, rather, normal bitmaps placed into the tail of the data returned by 
the drive. Each bit of the source data has its own corresponding bit of the 
C2-pointers. Analysis of the value of this bit allows us to determine whether or not this 
bit is corrupted without ambiguity. Taking into account the fact that the sector length 
is 2,352 bytes, it becomes easy to compute the total size of all C2-pointers bits, which 
is 2,352/8 = 294 bytes. The first byte of the sector corresponds to the first bit of 
the C2-pointers (Fig. 1.22). 

SmallFrame(l) 

CD Digital Audio 

SmallFrame(98) 

C2 Error Flags 

Fig. 1.22. Sequence of frames making up a block 
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To find out if a specific drive offers this possibility, just send the mode sense 10 

(5Ah) command to the drive with the Page Code equal to 2Ah (C/DVD Capabilities 
and Mechanical Status Page Format). Then the fourth bit of 13th byte of the returned 

data will specify that C2 Pointers option is supported. If this value is equal to 0, then 
this function is not supported (see the ”/etc/RAW.CD.READ/aspi32.cfg.c” demo ex¬ 
ample). In particular, my PHILIPS CDRW 2400 doesn’t provide this possibility. 

But enough bad news. Let’s return to our Cl- and C2-decoders or, to be more pre¬ 
cise, to the technique of computing the number of errors. There are at least six types of 
errors: a) single-character (recoverable) errors that correspond to the first stage of recov¬ 
ery (i.e., recoverable by the Q decoder); b) two-character (recoverable) errors corre¬ 
sponding to the first stage of recovery, and c) three-character (unfortunately, irrecover¬ 
able) errors that correspond to the same stage. A similar pattern is typical also for the 
second stage of recovery related to the C2 decoder. It is a common practice to designate 
errors by the Latin character ”E”, followed by a two-digit number, the first digit of which 
specifies the number of errors (1, 2 or 3), while the second specifies the stage of correc¬ 
tion (1 or 2). All possible combinations of these digits are outlined in Table 1.2. 

Table 1.2. Conventional notation for all possible types of errors 

Ell The number of single-character (recoverable) errors at the Cl stage 

E21 The number of two-character (recoverable) errors at the Cl stage 

E31 The number of three-character (irrecoverable) error at the Cl stage 

E12 The number of single-character (recoverable) errors at the C2 stage 

E22 The number of two-character (recoverable) errors at the C2 stage 

E32 The number of three-character (irrecoverable) errors at the C2 stage 

Three-character errors that cannot be recovered at the Cl stage (e.g., E31 errors) 

can be successfully recovered at the next recovery stage in most cases. However, a sin¬ 

gle E31 error can cause up to 30 E12 errors, because the data of 160 FI-frames are 

carefully mixed between Q- and C2 decoders! 

Three-character errors irrecoverable at the C2 stage (e.g., E32 errors) serve as an evi¬ 

dence of a serious physical defect on the disc surface. Unfortunately, these errors are 

not as uncommon as they might seem at first glance, even on ’’virgin” discs. This is due 

to imperfect technological processes. Because of this, it is necessary to use redundant 

error correction codes on data CDs (for Audio CDs, interpolation is used in such 

cases, but for data CDs, interpolation is senseless). More detail on this topic was pro¬ 

vided in "Raw and Cooked Sectors." 

F3-frame. When an F2-ffame produced as the output of the CIRC decoder is com¬ 

plemented by another byte of auxiliary data, called the Control Byte, an F3-ffame is formed, 
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which was already considered in "Pits, Lands, Frames, and Sectors in Brief". The struc¬ 
ture of the F3-ffame is perfectly simple: first is the control byte, followed by 32 bytes 

inherited from the F2-frame. The control byte contains eight subcode bits, which, in 
turn, form channels that are 98 bytes long, which means that they span the entire sec¬ 

tor comprising 98 F3-frames (for more detail, see "Subcode Channels”). 

The structure formed by the 98 F3-ffames is called a section and represents a self- 
sufficient entity not in any way bound to the sector boundaries. According to the ECMA- 
130 standard, "These Sections are asynchronous with the Sectors, i.e., there is no prescribed 
relation between the number of the FI-Frame, in which the first byte of a Sector is placed, 
and the number of the F3-Frame, in which the first Control byte of the table is placed." 
Another section of the same standard reads as: "The address of a Sector is recorded in the 
Sector Header, also as an absolute time. It has no prescribed relation to the addresses of the 
Sections, because the mapping of a Sector on the Sections during recording is implementa¬ 
tion-dependent due to the freedom left in clause 16. Therefore, the address of a Sector is filled 
in just before the Sector enters the CIRC encoder." 

The first bytes of the two F3-ff ames of each section (e.g., the first two control bytes 
of the section) are processed in a special manner. In contrast to other 3,232 bytes of 
the section, which are converted into 14-bit EFM-sequences that are directly written 
to the disc, these two bytes are replaced by fixed sync groups named SYNCO 
(00100000000001) and SYNC1 (OOOOOOOOOIOOIO), respectively (Fig. 1.23). 

Byte b8 b? »6 »5 t>4 b3 b2 b, 
No. P q r s t u V w 

0 SYNCO 

1 SYNC 1 

2 

96 

97 

Fig. 1.23. Section structure 

Lead-in Area, Data Area, Lead-out Area, and TOC 
The sequence of sectors of the same format is joined into the track, the minimum pos¬ 
sible length of which is 300 sectors, while the maximum possible length can consume 

the entire disc. The first and last tracks of the disc are called the Lead-in and Lead-out 
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areas and are used for special purposes, although most contemporary drives can do 
without them (with regard to recorders, they are obliged to do so). 

Lead-In Area is an auxiliary disc area, which actually represents track number 9, 
always preceding the first PMA track. Each session of a multisession disc has its own 
Lead-in area. The size of the Lead-in area according to the standard is 9 MB 
(60 seconds, or 4,500 sectors). The Q subcode channel of the Lead-in session contains 
the TOC, where among other useful information, there are special pointers specifying 
either the Lead-out area address (closed disc), or the Lead-in area address of the next 
session (opened disc). The contents of the Lead-in area are unavailable for reading at 
the software level (drives from MSI provide this capability). Visually, the Lead-in area 
looks like a uniformly light shining ring. 

Not every shining ring is the Lead-In! The actual Lead-In is always located at a dis¬ 
tance of 23 mm from the disc edge, and is preceded by arbitrary trash. 

CAUTION 

Lead-Out Area. This is an auxiliary disc area designated by the track number AAh 
and terminating any closed session. The Lead-out area serves as a kind of indicator of 
disc and/or session termination. It helps the optical head to avoid being darted out of the 
disc limits. CD recorders must correctly process discs with open sessions. Normal CD- 
ROM drives and audio players, however, are not obliged to do so. 

The lack of a Lead-out session (as well as specifying an incorrect address for it) 
might damage some drive models (for instance, PHILIPS). 

CAUTION 

The capacity of the Lead-out area of a single-session disc is, according to the standard, 

13.5 MB (6,750 sectors, or 1.5 minutes). The capacities of the Lead-out areas for the second 

and subsequent sessions of multi-session discs are reduced to 4 MB (0.5 minutes, 

or 2,250 sectors). The contents of the Lead-out area are unavailable at the software level 

(the only exception are MSI drives). Visually, the Lead-out area looks like a shining ring. 

TOC— Table Of Contents. This is an auxiliary area of the disc written in the 

Q subcode channel of the Lead-In area of the disc (it looks like a shining ring near the 

inner edge of the disc). Multisession discs have several independent TOCs, one TOC 

per each closed session. The TOC of an open session is stored in a special area in the 

PMA and, according to the standard, is available only to CD recorders. However, some 

models of CD-ROM drives can also read the TOC from the PMA. 

The TOC contains information on the starting addresses of the disc Lead-in/Lead- 

out areas and the attributes of all its tracks (for instance, track type: audio or data. 

If the track type is data, then the data mode — Mode 1, Mode 2, etc., absolute starting 

address of the track and its corresponding session number). Besides this, the TOC also 

contains part of the ATIP and pointers to the location of its continuation. 
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The TOC is unavailable for reading directly or at the sector level,. However, to ex¬ 
tract its contents in the raw form, it is possible to use the following SCSI/ATAPI com¬ 

mand: READ TOC/PMA/ATIP (opcode: 43h) with format field == 2h. 

The TOC should not be confused with the file system. In fact, the TOC and file 
system have nothing in common! File systems of CDs are stored directly in PMA and 
are easily available for reading at the sector level. 

Program Area. This is the disc area located between the Lead-In and Lead-Out ar¬ 
eas and containing information tracks with music or data. This is the main area of the 
disc, fully available at the sector level, including pauses between audio tracks. Most 
Data-CDs contain a single data track storing all of the necessary information recorded 
in a specific file system. However, file systems go beyond the limits of the topic under 
discussion. With regard to Audio-CDs, they have no file system at all. Rather, they use 
the TOC for this purpose, placing each song into a separate track. 

If the Lead-out area is followed by a Lead-in area, the disc is described as multi- 
session. Each closed session has its own Lead-in, Lead-out, and TOC, and the pointer 
contained in the Lead-out area contained in the TOC can include both the actual ad¬ 
dress of the Lead-out area of the current session and the address of the Lead-out area 
of the next session! The number of sessions is, in principle, unlimited. However, be¬ 
cause of the pass-through numbering of tracks, the number of sessions cannot exceed 
99. The session can be independent (the TOC specifies only tracks within a session) or 
connected (in this case, the TOC contains the addresses of tracks from previous ses¬ 
sions). However, not all drives recognize the existence of sessions. For example, a vast 
majority of audio players "see” only the first session and ignore all others. Because of 
this, it is possible to create discs that cannot be read on CD-ROM drives installed in 
computers, but can be read normally by standard CD players. 

The session is considered to be closed if its data area is framed by Lead-in and 
Lead-out areas. Unclosed sessions can only be read by recording devices, which re¬ 
quire access to the PMA. The pointer in the session’s TOC pointing to the Lead-out 
area can contain either the actual address of the Lead-out area of the current session 
(closed disc), or the address of the Lead-in area of the next session. Recording is lim¬ 
ited by the available disc space, the space in the PMA and the number of tracks (tracks 
are numbered using pass-through numbering, from 01 to 99). Sessions can also be 
connected at the level of the file system. The sessions mechanism allows for the 
’’modification” of the CD-R by writing a new session. 

—| ——h r-- 
^—Lead-Out fli ^ 25 _J 1 

1 mm 
Lead-In —* 

mm Program Area 
—15 mm 

Rft mm _^ 
\*-120 mm - 

Fig. 1.24. CD structure 



Chapter 2: Power 
of Reed-Solomon Codes 

Entropy is blind, but patient. Sooner or later, by centering its fire 
on our position, square by square, it will strike the headquarters, 

or communication center. The first line of defense will then be 

destroyed. We will have to retreat to positions prepared before¬ 

hand. In other words, in such a situation a programmer has to 

rely on a backup copy of the volume. 

E. V. Lishak 

"32th Day of the year. 

(Notes of para-system programmer)." 

Practically everyone will already have heard of the existence of error-correction Reed- 
Solomon codes, widely used in data storage and transmission devices for the detection 

and correction of both single and multiple errors. Their application area is unusually 
large. Reed-Solomon encoders/decoders can be found in tape storage drives, RAM 
controllers, modems, hard disks, CD-ROM/DVD drives, etc. Thanks to these codes, 
some advanced archivers can survive the corruption of several sectors of the media- 
containing archive, or, sometimes, even the total destruction of an entire volume of 
a multi-volume archive. Besides this, Reed-Solomon codes enable the protection 
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mechanism to restore bytes hacked by someone trying to crack the system or cor¬ 
rupted as a result of software or hardware failure. 

In brief, although mastering the technique of error-correction encoding doesn’t 
automatically give God-like powers, it at least raises you to that Olympus where great 
computer Gurus dwell among noiseless coolers and bug-free operating systems. 

At the same time, only a small number of programmers can claim pride in original 
implementation of Reed-Solomon codes. After all, what is the point of bothering? 
There are lots of ready-to-use libraries, ranging from commercial software to free 
source codes distributed according to the GNU license agreement. There is a wide 
range of possibilities. Take any library of your choice1. Sure, there is pragmatic reason 
for using libraries. However, if you entrust control to the program without under¬ 
standing how it actually works, are you a hacker? This book’s intended audience, after 
all, mainly comprises hackers (naturally, in only the most positive sense of the term). 
On the other hand, when analyzing software distributed without source codes, you 
won’t be able to identify the Reed-Solomon algorithm unless you carefully investigate 
it beforehand to gain a clear understanding of all of its intricacies. Suppose that you 
have encountered a protection mechanism that in some intricate way manipulates 
EDC/ECC fields of key sectors read from a CD. Further, assume that each of these 
sectors contains two mangled bits (plus errors that are generated in a natural way, 
provided that the CD is treated carelessly). At the same time, one of these is a false er¬ 
ror and shouldn't be corrected. When copying the protected disc using a standard pro¬ 
cedure, the microprocessor of the CD-ROM drive automatically correct all errors that 
the drive is capable of correcting. As a result, key marks will be erased. Consequently, 
the protected program will cease to operate. It is, of course, possible to copy the disc in 
the raw mode, e.g., without error correction. However, in this case, the copy will con¬ 
tain all of the errors of the original, both intentional and unintentional. As a result, 
even if the original is only slightly damaged, the correction capabilities of Reed- 
Solomon codes may be insufficient and the disc will become unreadable (What did 
you expect? Copying discs in raw mode results in error accumulation> and, therefore, is 
highly inefficient from any point of view). Mastering the basic principles of error- 
protected encoding will help us to grasp the logic of any protection mechanism. 
In particular, we will understand, which errors have to be corrected and which must 
be left ”as is.” 

Unfortunately, most publications related to the Reed-Solomon codes are written in 
the language of higher mathematics. It is often beyond the average university graduate to 

understand these materials (how many hackers have math skills at the University level?) 

1 "...due to implementation errors, this code adds new bugs instead of eliminating the existing ones. 
Therefore, this code is no longer available" — this is the comment to the GNU source codes of 
the Reed-Solomon encoder/decoder. Having encountered such a comment, would you trust in Li¬ 
nux reliability in general and GNU library code in particular? Well, I never! 
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As a result, in the best case most of these abstract manuals end up buried at 

the back of hacker’s bookshelves, where they gradually become covered with dust. 

In the worst case, they end up in the garbage can. 

Software implementation of the Reed-Solomon error-correcting codes is actually 

very complicated and requires an above-average level of mathematical abilities. An ex¬ 

planation of the mathematical foundations of its implementation might seem boring 

and tiresome to system and hardware programmers, but, unfortunately, there is no 

other way around it. After all, no one promised that it was going to be easy to become 

a programmer. To become a really good programmer is significantly more difficult, so 

don’t say you weren’t warned beforehand! Just kidding :-). Don’t worry, take it easy 

and don’t be afraid of higher mathematics. You will encounter a few formulas in this 

chapter (what mathematician can live without formulas?), but, in most cases, I’ll try to 

speak in the international programming language — C, which is familiar to all system 

programmers. So, fasten your seatbelts, and raise your heads from the keyboards, 

and off we go! 

Basics of Error-Correcting Codes 
and Error-Correcting Encoding 

Personal computers and bits and bytes have so inundated our everyday life that most 

people have ceased to think about information-encoding theory altogether, thinking 

of it as something self-evident. But things are not as simple as they might seem at 

the first glance. 

In fact, encoding involves nothing more than the conversion of a message into 

a sequence of code symbols, also called codewords. Any discrete message contains a finite 

number of elements. In particular, any text is made up of letters, an image is made up 

of pixels, while a machine program is made up of commands, etc. Together, these 

building blocks form the message source alphabet. In the course of encoding, message 

elements are converted into corresponding numbers — code symbols, where each 

message element is assigned a unique sequence of code symbols, called a code combi¬ 

nation. The set of code combinations that makes up the message is the code. The set of 

possible code symbols is called the code alphabet, while their total number (later on, 

designated by a lower-case m) is the code base. 

Most likely, however, that you are aware of these facts already (even if you aren’t, 

you can find a comprehensive explanation of encoding basics in any textbook 

on computer science). Are you, however, familiar with what is meant by the term 

Hamming distance? The Hamming distance is the minimum number of differences 

between any two valid codewords and it plays a fundamental role in the theory 
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of error-correcting encoding. An official definition is as follows: "Hamming distance is 

a measure of the difference between two messages, each consisting of a finite string of 

characters, expressed by the number of characters that need to be changed to obtain 

one from the other." For instance, let us consider the following four-bit code: 

Listing 2.1. An example of the simplest four-bit code with Hamming distance 
equal to one. Such a code is widely used in computing, despite its inability 
to detect errors 

0 0000; 4 0100; 8 1000; 12 1100; 

1 0001; 5 0101; 9 1001; 13 1101; 

2 0010; 6 0110; 10 1010; 14 1110; 

3 0011; 7 0111; 11 1011; 15 1111; 

This is a normal binary code that might be encountered in some microcontrollers 

that hold 16 symbols in their 4 bits (meaning that, using this code, it is possible to en¬ 

code 16 alphabetical characters). As can be easily checked, any two characters differ by 

at least one bit. Consequently, the Hamming distance for such a code is equal to 1 

(e.g., d = 1). 

Here is another four-bit code: 

Listing 2.2. An example of a four-bit code with Hamming distance equal to 2. 
This code is already capable of detecting single errors 

0 0000; 

1 -> 0011; 

2 -> 0101; 

3 -> 0110; 

4 1001; 

5 1010; 

6 -> 1100; 

7 1111; 

This time, any two arbitrarily taken symbols are different in at least two positions. 

Because of this, the information capacity of such a code has been reduced from 16 to 

8 symbols. "But wait," some of you might cry out in surprise, "what gibberish? Where 

are combinations such as 0001 or 0010, for instance?" But this isn’t gibberish. This code 

doesn’t actually contain these combinations. To be more precise, they are present, but 

are declared code violations, also known as noncode symbols or prohibited symbols. 

Because of this circumstance, our code is capable of detecting any single error. 

For instance, let us take the 1010 symbol and invert there any arbitrary (but a single) bit. 
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Suppose that this is the second bit from the left. The corrupted symbol will then ap¬ 

pear as follows: lgio. Since the 1110 combination is not a valid codeword, the decoder 

will report the occurence of an error. It can, alas, only detect an error, and is unable to 

fix it. In order to correct even a single erroneous bit, it is necessary to increase the 

Hamming distance to at least 3. Since four-bit code with d = 3 can comprise only two 

different symbols, it is not illustrative. Therefore, it is better to choose a wider code. 

Let’s try a 10-bit code where d = 5. 

Listing 2.3. An example of 10-bit code with Hamming distance equal to 5. This 
code can detect 4-bit errors and correct 2-bit errors 

0000000000 0000011111 1111100000 1111111111 

For example, let us take the OOOOOlllll symbol and invert any two bits. As a result, 

we will get something looking like OlOOllOlll. Since this combination is not a valid 
codeword, the decoder detects that an error has occurred. Obviously, if the number of 
erroneous bits is smaller than the Hamming distance at least twice, the decoder is 

guaranteed to restore the initial symbol. In fact, if there are no less than 5 differences 
between any two valid symbols, then corruption of two bits of any such symbol will 
produce a new symbol of the alphabet (let us designate it as k). The Hamming distance 

between k and the original symbol is equal to the number of inverted bits (e. g., two in 
our case), while the distance to the nearest valid symbol is equal to d - k (3, in our 
case). In other words, while d - k > k, the decoder is guaranteed to restore the origi¬ 
nal symbol. In cases when d > k > d - k, successful restoration is not guaranteed. 
However, under favorable conditions it is possible in principle. 

Returning to our symbol 0000011111, let us corrupt 4 bits: 0100110101 and try to 

restore the original symbol. Let us represent the recovery process graphically: 

Listing 2.4. An attempt at correcting a 4-bit error 

0000000000 0000011111 1111100000 1111111111 

0100110101 0100110101 0100110101 0100110101 

5 differences |4 differences! 6 differences 5 differences 

Roughly speaking, after detecting an error, the decoder sequentially compares the 

corrupted symbol with all of the valid symbols of the alphabet, trying to find the 
one that has the smallest number of differences with the corrupted one. To be more 
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precise, it looks for the symbol that differs from the corrupted one in no more than 
(d - l) bits. As can be seen easily, in this case we were lucky and the restored symbol 
actually matched the original one. However, if four corrupted bits were distributed as 
follows: Olllllllll, the decoder would consider it to be llllllllll, and the restora¬ 

tion would be incorrect. 
Thus, the correcting capability for a specific code is defined according to the fol¬ 

lowing formula: to detect r errors, the Hamming distance must be greater than or 
equal to r, while for correcting r errors the Hamming distance must be greater than 

the duplicated number of errors r by at least one. 

Listing 2.5. The correcting capabilities of a simple Hamming code 

Error detection capability: d >= r 

Error correction capability: d > 2r 

Information capacity: 2n/d 

Theoretically, the number of detectable errors is unlimited, while, in practice, the 
information capacity of codewords dwindles rapidly with the growth of d. Suppose 
that we have 24 bytes of data and would like to correct up to two errors per each block. 
In this case, we will have to add 49 bytes more to this block, and, as a result, its infor¬ 
mation capacity would drop down to 30 percents! Is this a positive development? This 

deplorable result can be explained by the fact that bits of the codeword are isolated 
from one another, and changing one of them has no effect on the others. Is there any 
way out of this situation? There is! 

Let all bits whose numbers represent powers of two, play the role of check bits, 
while the other bits will be normal bits carrying the information of the message. Each 

check bit must be responsible for the parity1 of a specific group of bits controlled by it. 
Note that the same information bit can relate to different groups. One information bit 
will influence several check bits and, therefore, the information capacity of the code¬ 
word grows considerably (even "tremendously"). After that, it only remains to choose 
the optimal distribution of the spheres of influence. 

According to the methods of error-protected encoding suggested by Hamming, 
in order to determine which check bits control the information bit in position k, it is 
necessary to factorize k by powers of two. 

1 E.g., if the sum of bits being checked is even, then the parity bit is equal to zero, and if it is odd, the 
parity bit is set to 1. 
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Table 2.1. Dividing bits into check bits and data bits 

Position Controlled by bits 

1 (A) 2° = 1 This is a check bit, it isn't controlled by any bit. 

2(B) 21 = 2 This is a check bit, it isn't controlled by any bit. 

3 2°+21 = 1 + 2 = 3 Controlled by check bits 1 and 2. 

4(C) 22 = 4 This is a check bit, it isn't controlled by any bit. 

5 2°+22= 1 +4 = 5 Controlled by check bits 1 and 4. 

6 21 + 22 = 2 + 4 = 6 Controlled by check bits 2 and 4. 

7 2°+21 + 22=1 + 2 + 4 = 7 Controlled by check bits 1, 2 and 4. 

8(D) 23 = 8 This is a check bit, it isn't controlled by any bit. 

Let’s try to get a live "taste” of Hamming codes and manually calculate the check¬ 

sum of the 0101 four-bit symbol. After reserving places for check bits (highlighted in 
bold) our symbol will appear as follows: AB0C101. Now, it simply remains to calculate 

the values for bits A, B, and C: 

□ Bit A controlling bits 3, 5, and 7 is equal to zero, because their sum (o + 1 + l) 
is even. 

□ Bit B controlling bits 3, 6, and 7 is equal to one, because their sum (o + 0 + l) 

is odd. 

□ Bit c controlling bits 5, 6, and 7 s equal to zero, because their sum (l + 0 + l) 
is even. 

Thus, the newly created codeword will appear as follows: 0100101, where the check 

bits are highlighted in bold. 

Listing 2.6. The codeword with check bits 

AB0C101 

1234567 

Now let us suppose that in the course of transmission, one of the bits of our code¬ 

word was inverted. As a result, the codeword began to appear as follows: 0l00l[l]l. Can 

we detect such an error? Let’s try. Bit A must be equal to: (0 + 1 + 1) % 2 = 0, which 
is true. Bit B must be equal to (0 + 1 + 1) % 2 = 0. But in our codeword, it is equal 
to one. Let us memorize the number of "incorrect” bit and continue. Bit c must 

be equal to (1 + 1 + 1) % 2 = l; however, it is equal to zero. Aha! The check bits 
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in positions 2 (bit b) and 4 (bit c) do not match reality. Their sum (2 + 4 = 6) gives 
the position of the erroneous bit. Actually, in this case, the number of the mangled bit 
is equal to 6. Let’s invert it to return our codeword into its original state. 

What will happen if the corruption happens to a check bit rather than an informa¬ 

tion bit? The test will show that in this case, the corrupted bit can also be detected suc¬ 
cessfully. In this case, it can also be restored using the above-described technique 
(however, does this make any sense? After all, check bits are discarded in the course of 
decoding the codeword anyway). 

At first glance, it might seem that Hamming codes are horribly inefficient, since for 
each 4 data bits we have 3 check bits. However, since the numbers of check bits are 

powers of two, they become more and more sparse with the growth of the codeword 
length. Thus, the check bit D, nearest to bit c, is located in position 8 (e.g., three steps 
away). The check bit E, however, is divided from bit D by 24 - 23 - 1 = 7 steps, while 

check bit F is at a distance of25-24-l = l5 steps. 
Thus, the efficiency of Hamming codes rapidly increases with the growth of the 

length of the processed block. The program provided below clearly illustrates this: 

Listing 2.7. Calculation of the effective information capacity of Hamming codes 
for codewords of different length 

main() 

int a; 

int _pow = 1; 

int old_pow = 1; 

int N, old_N = 1; 

printf( "* * * Hamming code efficiency test * * * by Kris Kaspersky\n”\ 

” BLOCK_SIZE FUEL UP EFFICIENCY\n”\ 

"-\n") ; 

for (a = 0; a < MAX_POW; a++) 

N = _pow - old_pow - 1 + old_N; 

printf(”%8d %8d %8.1f%%\n", _pow, N, (float) N/_pow*100); 

} 

// NEXT 

old_pow = _pow; _pow = _pow * 2; old_N = N; 

} printf(”-\n”) ; 
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Listing 2.8. Calculation of the effective information capacity of Hamming codes 
for codewords of different length 

iOCK_SIZE FUEL UP EFFICIENCY 

1 0 0. 0% 

2 0 0. 0% 

4 1 25. 0% 

8 4 50. 0% 

16 11 68. 8% 

32 26 81. 3% 

64 57 89. 1% 

128 120 93. 8% 

256 247 96. 5% 

512 502 98. 0% 

1024 1013 98. 9% 

2048 2036 99. 4% 

4096 4083 99. 7% 

8192 8178 99. 8% 

16384 16369 99. 9% 

32768 32752 100. 0% 

65536 65519 100. 0% 

131072 131054 100. 0% 

262144 262125 100. 0% 

524288 524268 100. 0% 

From the listing provided above, it follows that in the course of processing blocks 

of a size of at least 1,024 bits, the overhead for processing check bits can be fully 

neglected. 
Unfortunately, Hamming codes can correct only single errors, which means that 

they can tolerate the corruption of only one bit per entire block being processed. 

Naturally, error probability increases with the size of blocks being processed. There¬ 

fore, the choice of optimal codeword length is a non-trivial task, requiring at least the 

knowledge of error types and frequency, at which they occur in the communication 

links. For tape drives, CDs, hard disks, and other similar devices in particular, Ham¬ 

ming codes prove to be extremely inefficient. Why do we consider them? Well, for the 

simple reason that advanced encoding systems, including Reed-Solomon codes, are 

impossible to understand if you start attacking them from scratch. This is because they 

are actually based on complicated mathematical algorithms. However, after consider¬ 

ing simpler methods such as Hamming codes, this, in fact, becomes possible. 
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Idea of Reed-Solomon Codes 
Simply speaking, the basic idea of Reed-Solomon codes is multiplying the information word 
represented in the form of a polynomial D by the prime polynomial G1, known to both parties. 
As a result, the codeword c will be obtained, also represented in the polynomial form. 

Decoding is carried out in the inverse manner: If, after dividing the codeword c by 
the polynomial g, the decoder obtains a remainder, it can report an error. Accordingly, 
if the codeword can be divided without a remainder, this means that its transmission 
was completed successfully. 

If the power of the polynomial G (also called the generator polynomial) exceeds the 
power of the codeword by at least two, then the decoder is capable not only of report¬ 
ing, but also of correcting single errors. If the power of the generator polynomial ex¬ 
ceeds that of the codeword by 4, double errors can also be corrected. Briefly speaking, 
the power of polynomial k is related to the maximum number of recoverable errors t 

as follows: k = 2*t. Consequently, the codeword must contain two auxiliary symbols 
per one recoverable error. Meanwhile, maximum number of recognizable errors is 
equal to t, i.e., one redundant symbol per each recognizable error. 

In contrast to Hamming codes, Reed-Solomon codes can correct any reasonable number 
of errors with quite an acceptable level of redundancy. What helps to achieve this result? 
In Hamming codes, check bits controlled only data bits to the right of them and ignore all data 
bits located to the left. Let us return to Table 2.1. The addition of the 8th check bit D has in no 
way improved the noise immunity of encoding, since the check bit D has nothing to control. 
In Reed-Solomon codes, check bits expand their influence to all data bits. Therefore, increas¬ 
ing the number of check bits improves the quality of error detection/correction. Thanks to 
this, Reed-Solomon correcting codes have become so stunningly popular. 

Now for the bad news. Normal arithmetic is not suitable for working with 
Reed-Solomon codes. Encoding assumes computations over polynomials, the coeffi¬ 
cients of which must be added, subtracted, multiplied, and divided. These operations 
must not be accompanied by the rounding up of intermediate results (even division), 
in order to avoid the introduction of indeterminacy. Both intermediate and final re¬ 
sults must not exceed the predefined limits of the bit width. But wait! This is impossi¬ 
ble! Who believes that multiplication doesn’t increase the bit width of the result?! 

Still, if we call up a little brain power, we can grasp that it is not necessary to mul¬ 
tiply the information word by the generator polynomial. It is possible to find a much 
more elegant solution. 

1. Add r trailing zeroes to the source data word D. As a result, we will get a word that has the 

length of n = m + r and the polynomial xr*D, where m is the length of the data word. 

1 I.e., the polynomial with integer coefficients that cannot be expressed as the product of two lower- 
degree polynomials with integer coefficients. 
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2. Divide the resulting polynomial xr*D by the generator polynomial g and calculate 

the remainder from the division R, so that xr*D = g*q + R, where q is the quotient 

which we ignore, since, at this stage, only the remainder is of interest. 

3. Add the remainder r to the data word d, as a result we will get a code word c, 

the data bits of which are stored separately from control bits. In fact, the remainder 

that was obtained as a result of division represents correcting Reed-Solomon codes. 

The method of encoding, in which data and check symbols are stored separately, 

is known as systematic coding. Such coding is convenient from the point of view of 

hardware implementation. 

4. Now, mentally scroll steps 1, 2, and 3, trying to detect, at which stage of calculation 

the bit width has been exceeded. You’ll notice that there is no such stage! Every¬ 

thing is OK. It only remains to point out that the information word plus correcting 

codes can be written as t == xr*D + r = gq. 

Decoding of the resulting keyword t is carried out in just the same manner as was 

described earlier. If, when dividing T (which, in fact, represents the product of G and q) 

by the generator polynomial g, we get a remainder, this means that the word t is cor¬ 

rupted, and, accordingly, if there is no remainder, there was no error. 

Now, the question arises as to how are we going to carry out division of polynomi¬ 

als within the framework of standard algebra? In integer arithmetic, division is not de¬ 

fined for all pairs of numbers (for instance, 2 cannot be divided by 3, and 9 cannot be 

divided by 4, — without the loss of value, of course). With regard to floating-point di¬ 

vision, its precision is catastrophically insufficient for effective use with Reed-Solomon 

codes. Further, it is somewhat complicated for hardware implementation. If you are 

working with IBM PC based on a Pentium processor, it is equipped with high- 

performance math coprocessor. However, consider the situation from the point of 

view of manufacturers releasing hardware like tape drives, hard disks, CD drives. 

Are they going to equip these devices with Pentium 4 processors?! Of course not! 

It is much better to use special arithmetic — the arithmetic of finite groups called 

Galois fields. The advantage of this arithmetic is that operations of addition, multipli¬ 

cation, subtraction, and division are defined for all members of the field (except, natu¬ 

rally, for the case of division by zero). The number obtained as a result of any of these 

operations is guaranteed to be present in the group! This means that when dividing 

any integer number a, belonging to the set 0...255, by any integer number b belonging 

to the same set (naturally, B must not be equal to zero), we will get the number c, 

belonging to the same set. Consequently, there are no losses of value, and no uncer¬ 

tainty appears. 
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Thus, correcting Reed-Solomon codes are based on polynomial operations in 

the Galois fields and require the programmer to master several aspects of higher 

mathematics in the field of the theory of numbers. Like any other concepts of higher 

mathematics, Galois fields represent an abstraction that can’t be presented in 

the form of illustration or "felt” in any other way. When dealing with such an 

abstraction, it is just necessary to accept it as a set of axioms, without trying to grasp 

its sense. It is sufficient to know that it works. That’s all. Still, there are polynomials 

of vast powers, which will turn the normal system programmer a little green 

(unfortunately, programmers with higher math education are more of an exception 

than a rule). 

Therefore, before rushing into the depths of a pathless mathematical forest of ab¬ 

stractions, let us construct the model of the Reed-Solomon coder/decoder operating 

according to the rules of normal integer algebra. Naturally, because the bit width must 

inevitably be extended in this case, it will be rather hard to find a reasonable area of 

application for such a coder/decoder. However, it works, it is illustrative, and it allows 

not only the understanding of the working principle of Reed-Solomon codes, but also 

allows you to feel them intuinively. 

Let us base our considerations on the assumption that if g = 2n + 1, then for any a 

belonging to the range of 0...2n, the product a*g = c (where c is the codeword) will 

represent a jumble of bits from both source numbers. 

Let us assume that n = 2, then g = 3. As can be easily seen, no matter by which 

number we multiply g — by 0, by 1, 2, or 3. Either way, the result will be exactly di¬ 

visible by g only in case if no one of its bits is inverted (or, simply speaking, that there 

are no single errors). 

The remainder from the division is a clear indication of the position in which the 

error has occurred (provided that it is a single error, because this algorithm is incapa¬ 

ble of correcting group errors). To be more precise, if the error occurred in position x, 

then remainder of division will be equal to k = 2X. To determine x by a given k value 

quickly, it is possible to use a trivial table algorithm. Nevertheless, for restoring 

the corrupted bit, it is not necessary to know its position. It is enough to simply carry 

out the following operation: R = e A k, where e is the mangled codeword, A stands for 

the xor operation, and R is the recovered codeword. 

In general, the working implementation of the coder/decoder might appear as below. 

This implementation operates on the basis of normal arithmetic (e.g., with unjustified 

extension of the bit width), and corrects any single errors in a single 8-bit data word 

(naturally, it is not difficult to modify this program to operate with 16-bit 

information words). Note that the coder is implemented in a significantly simpler 

manner than decoder. In a real-world Reed-Solomon coder/decoder capable of cor¬ 

recting group errors, this gap is even more considerable. 
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Listing 2.9. [/etc/EDC.ECC/rs.simplest.c] The simplest example 
of implementation of the Reed-Solomon coder/decoder 

/*- 
* 

* SIMPLEST REED-SOLOMON CODER/DECODER 

* - 
* 

* Build 0x001 @ 02.07.2003 

-*/ 

// ATTENTION! This coder/decoder is built on the basis 

// of normal arithmetic, not on the Galois arithmetic. 

// As a result, its functional capabilities are very limited. 

// However, it is very easy and illustrative 

#include <stdio.h> 

#define SYM_WIDE 8 // width of the source data word (bits) 

#define DATAIN 0x69 // input data (on byte) 

#define ERR_POS 3 // number of corrupted bit 

// prime polynomial 

#define MAG (1« (SYM_WIDE*1) + 1« (SYM_WIDE*0) ) 

//- 
// determining the error position x given the remainder k 

// from the division of the codeword by the polynomial 

// k = 2Ax, where ”A” — means raising to power 

// The function accepts k and returns x 

//- 
int pow_table[9] = {1, 2, 4, 8, 16, 32, 64, 128, 256}; 

lockup(int x) {int a; for(a=0; a<9; a++) if(pow_table[a]==x)return a; return -1;} 

main() 

int i; int g; int c; int e; int k; 

fprintf(stderr, ’’simplest Reed-Solomon encoder/decoder by Kris Kaspersky\n\n”); 

i = DATAIN; // input data (data word) 

g = MAG; // prime polynomial 

printf(”i = %08x (DATAIN)\ng = %08x (POLYNOM)\n”, i, g); 

// REED-SOLOMON CODER (very simple, but working) 

// calculating the codeword intended for transmission 
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c = i * g; printf (”c = %08x (CODEWORD) \n’’, c) ; 

// End of CODER 

// transmission with errors 

e = c A (l«ERR_POS) ; printf(”e = %08x (RAW RECEIVED DATA+ERR) \n\n”, e) ; 

/* aaaa inverting one bit to imitate the transmission error */ 

// REED-SOLOMON DECODER 

// Check for transmission errors 

// (the simplest Reed-Solomom decoder) 

if (e % g) 

{ 

// errors detected, trying to correct 

printf(”RS decoder says: (%x) error detected\n{\n”, e % g); 

k = (e % g); // k = 2Ax, where x is the position of erroneous bit 

printf(”\tO to 1 err position: %x\n”, lockup(k)); 

printf (”\trestored codeword is: %x\n}\n”, (e A= k)); 

} 

printf (’’RECEIVED DATA IS: %x\n”, e / g) ; 

// END OF DECODER 

Now, consider the results. Pay special attention to the fact that the corrupted bit 

was successfully restored. However, in order to achieve this, it was necessary to add 
three bits (instead of 2) to the source data word. Note that you take the maximum 
allowed 8-bit value OxFF as the input word, then the code word will be equal 
to OxlFEOO. Since 210 = 10000, there will be no free positions, and the width must be 
increased up to 211, while the least significant bits of the code word remain unused. 
The "correct" coder must "connect" them in the manner of a ring. 

Listing 2.10. The output of the simplest Reed-Solomon coder/decoder 

i = 00000069 

g = 00000200 

c = 0000d200 

e = 0000d208 

(DATAIN) 

(POLYNOM) 

(CODEWORD) 

(RAW RECEIVED DATA+ERR) 

RS decoder says: (8) errors detected 

0 to 1 err position: 3 

restored codeword is: d200 

} 

RECEIVED DATA IS: 69 
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General Concept 
Reed-Solomon codes represent non-binary systematic block-based error correcting 
codes related to the class of cyclic codes with numeric field different from GF(2) and 
representing a subset of Bose-Chaudhuri-Hocquenghem codes. The correcting capa¬ 
bilities of Reed-Solomon codes directly depend on the number of check bytes. Adding 

r check bytes allows you to detect r arbitrarily corrupted bytes and guarantees the 
restoration of r/2 bytes out of them. 

Recommended Reading 
Despite the fact that this section is self-sufficient and explains all mathematical facts 
without referring to third-party sources, the desire to improve your knowledge is quite 
natural and can only be welcome. Therefore, it will be much better if you do not limit 

yourself to this book only and, instead, read a variety of specialized literature, each 
time noting the depth of the gap between your vague idea and a true understanding. 

The theory of error-correcting encoding is so vast that you could spend virtually your 
whole life studying it. 

What are some starting points for this study? 

□ Blahut Richard "Theory and Practice of Error Control Codes” 

This is a very good book — a "must have". According to obscure rumors, it has 

been published somewhere on the Net. I, however, have been unable to find it. 
The large number of references to it, however, is evidence of its quality. 

□ James Plank "A tutorial on Reed-Solomon Coding for fault-tolerance in RAID-like 
systems ” 

A very good reference on the use of Reed-Solomon codes for building 
fault-tolerant systems similar to RAID, oriented towards programmers lacking 
fundamental math education and explaining clearly the idea of error-correcting 
encoding. It also provides source codes in C. An electronic copy is available at: 

http://www.cs.utk.edu/~plank/plank/papers/CS-96-332.pdf. I strongly recommend 
that you read this manual, even if you are not going to create RAID systems. 

□ Joel Sylvester "Reed-Solomon Codes” 

A very brief description of the Reed-Solomon codes’ working principles, 

supplied with flowcharts instead of the source code. It isn’t a comprehensive manual, 
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but it still provides an understanding of the general pattern. Available at: 

http://www.elektrobitco.uk/pdf/reedsolomon.pdf 

□ Tom Moore "REED-SOLOMONPACKAGE" (old tutorial) 

An excellent compendium of several manuals on Reed-Solomon codes — proba¬ 
bly the best that I’ve ever seen. Includes a brief description of the theory of Galois 
fields, the basic principles of constructing Reed-Solomon coders/decoders, and com¬ 

plete listings illustrated their implementation in C (unfortunately, very sparsely 
commented). This information was last posted in FIDO on 28.12.1994 in the 
comp.compression conference. It can be easily found using Google using the follow¬ 

ing keywords: ”Reed-Solomon+main+ECC”. Strongly recommended. 

□ Ross N. Williams "A painless guide to CRC error detection algorithms" 

A detailed manual on CRC. Very useful because of the easily readable, under¬ 
standable description of the polynomial arithmetic, without which operation with 

Reed-Solomon codes would simply be impossible. You can find it at 

ftp://www.intemode.net.au/clients/rocksoft/papers/crc_v3.txt 

□ ftape (driver of the tape drive from the Linux distribution set) 

No procedure of tape backup can do without error-correction codes! It’s hard 
even to imagine. Therefore, this analysis of the source codes of the drivers for tape 

devices provides rich food for thought (provided, of course, that the driver being in¬ 
vestigated actually uses the Reed-Solomon codes). The ftape Linux driver is the one 
you need. With regard to the code responsible for encoding/decoding Reed-Solomon 
codes, it is located in the ftape-ECC.c/ftape-ECC.h files. This is an example of good 
programming, so I recommend it. 

□ James S. Plank GFLIB "C Procedures for Galois Field Arithmetic and Reed-Solomon 
Coding" 

A library for working with Reed-Solomon codes. Contains complete source codes of all 

required functions and is distributed according to GPL license. Can be found on any 
GNU site, including the following: http://www.cs.utk.edu/~plank/plank/gflib/gflib.tar. 

Polynomial Arithmetic and Galois Fields 
In the previous section of this chapter, we mentioned that error-protected Reed- 
Solomon codes are based on the following math components: polynomial arithmetic 

and the arithmetic of Galois fields. We can’t proceed any further until we cover all of 
these aspects in detail, so let’s be patient before assaulting the peaks of higher math. 

After that, we’ll be engaged in pure coding without any sophisticated math. 
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Polynomial Arithmetic 
The 6th section of "Art of Programming" by Donald Knuth is dedicated to the poly¬ 
nomial arithmetic. There, the following definition is given to this area of math: 
"Formally speaking, polynomial over S is the following expression: u(x) = unxn + ... + 

+ u1x + uq, where un, ..., ui, uq coefficients are elements of some algebraic system S, 
and variable x can be considered as a formal symbol without a determining value. 

Let us assume that algebraic system S represents a commutative ring with 1. This means 
that S allows addition, subtraction, and multiplication operations satisfying normal re¬ 

quirements: addition and subtraction are associative and commutative binary opera¬ 
tions defined over S, multiplication is distributive in relation to addition. There are also 

elementary unit for addition 0 and elementary unit for multiplication 1, so that 
a + 0 == a and a * 1 == a for every a belonging to S. Subtraction is an inverse opera¬ 

tion in relation to addition; however, no assumptions have been made for division 
as operation inverse to multiplication. The polynomial 0xn + m + ... -V 0xn +1 + unxn + ... + 

+ u1x + uq is considered as identical to unxn + ... + u1x + uq, although formally these 
polynomials are different." 

Thus, instead of presenting data word d, codeword c, and the remainder from the 

division R as integer numbers (as we did earlier), we can relate them to the appropri¬ 

ate coefficients of a binary polynomial and carry out all further mathematical opera¬ 

tions according to the rules of polynomial arithmetic. At first glance, the gain from this 

approach seems doubtful. However, let’s not be hasty. Instead, let’s present any num¬ 

ber (the first one that comes to mind; for instance, let it be 69h) into a binary polyno¬ 

mial. Start the built-in Windows application named Calculator, or any other suitable 

application of your choice, and convert this number into binary form (with a bit of 

skill, it is possible to carry out this operation mentally: 69h -> 1101001. 

Well, the rightmost coefficient is equal to 1, then there are two zeroes, followed by 
1... briefly speaking, we get the following: lx6 + lx5 + Ox4 + lx3+ Ox2 + Ox + 1. 

In fact, the bit string 1101001 is one of the forms of writing the above-mentioned 
polynomial. Certainly, this form of data presentation might lack clarity from the be¬ 
ginner’s point of view, but it is very convenient for machine processing. Stop. If 69h 

already represents a polynomial, then what is the difference between the addition of 
polynomials 69h and 27h and the addition of integer numbers 69h and 27h?! Undoubt¬ 
edly, there is a difference. As Nietzsche has shown, there are no facts. All that exists are 
their interpretations. Interpretations of numbers and polynomials are different, and 
mathematical operations over them are carried out according to different rules. 

Coefficients in polynomial arithmetic are strictly typified and the coefficient of xk is 
of a different type than the coefficient of xm (provided, of course, that k ^ m). Opera¬ 
tions over numbers of different types are not allowed! All coefficients are processed 
independently and carry to the more significant bit or borrowing from the more 
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significant bit are not taken into account. Let us demonstrate this with the example of 
adding 69h and 27h: 

Listing 2.11. Addition carried out according to the rules of polynomial binary 
arithmetic (left) and according to the rules of normal binary arithmetic (right) 

1101001 (69h) 1101001 (69h) 

+0100111 (27h) +0100111 (27h) 

1001110 (4Eh) 10010000 (90h) 

Simple calculations show that modulo-2 addition of polynomials gives the same 
result as their subtraction and "magically" coincides with the xor operation. The match 
with xor is a purely accidental, though. However, the equivalence of addition and 
subtraction forces us to review the nature of things, to which most of us are accus¬ 
tomed. For instance, let us recall arithmetic problems such as "Mary has one apple. 
Pete takes it away from her. We gave another apple to Mary. How many apples does 

Mary have? How many apples would she have had if Pete hadn’t robbed her?". From 
the modulo-2 arithmetic the answer would be: zero and one, respectively. Yes! If Pete 
didn’t take the apple from Mary, l + l == o and the poor girl would not have any ap¬ 
ples at all. 

However, we are digressing. Let’s forget the quarrels between the kids and return 
to the factious member of our polynomial and its coefficients. Thanks to their typifica- 

tion and lack of mutual relations, we can process numbers of practically unlimited 
lengths by simply xoR’ing their bits. This is one of the main advantages of polynomial 
arithmetic that are unnoticeable at first glance, but thanks to which polynomial arith¬ 

metic became so widespread. 
In our case, however, polynomial arithmetic alone is not sufficient. To implement 

a Reed-Solomon coder/decoder, we’ll also need Galois fields. What are these, you ask? 

Galois Fields 
As long ago as the 1960s, when computers were iron-cast and 20 MB hard disks re¬ 

sembled washing machines, a beautiful legend was born about a green extra-terrestrial 

creature that came from stars and recorded the entire British Encyclopedia into 

a thin light-silvery rod, which the creature took with it as it left. These days, when 

the 100-GB hard disks are no bigger than a pack of cigarettes, this density of 

information recording is no longer a wonder. However, the point of this legend is 

that the extra-terrestrial creature has mastered the technology of writing an infinite 

volume of information on an infinitely small media, and the British Encyclopedia was 
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chosen just as an example. The alien could copy the contents of all Internet servers by 

placing only a thin trace on its metal rod. You don’t believe it? You have objections? 

Let us convert British Encyclopedia into digital form and obtain a very large number. 

Then let us place a decimal point before it, thus converting this number into a very 

long decimal fraction. Now it only remains to find two numbers, a and b, so that the 

result of dividing A by B is exactly equal to this decimal fraction with precision to the 

last digit. Writing these numbers to a metal rod can be carried out by placing a mark 

on the rod dividing the latter into two sections of lengths that are multiples of the val¬ 

ues a and b, respectively. To read information from the rod, it will be enough to meas¬ 

ure the lengths of the a and b sections and then divide a by b. The first ten digits fol¬ 

lowing the decimal point will be more or less precise, after which... The practice here 

will outdo the perfect theory, burying the latter under a thick cover of information 

garbage that results from the impossibility of measuring exactly the geometric size of 

real-world objects. 

In a digital world, the situation is even worse. Every programmer knows only too 

well that the division of integer and real numbers is subject to rather stringent limita¬ 

tions. First and foremost, division is a very resource-consuming operation, with regard 

to processor resources. If it’s not enough that it is insufficient, the operation is 

mathematically inaccurate! This means that, if c = a * b, this doesn’t necessarily 

mean that a == c/b! Thus, normal arithmetic is not suitable for practical implementa¬ 

tion of Reed-Solomon codes. Therefore, one has to resort to a special branch of 

mathematics, namely, the mathematics of finite Galois groups. 

Here, we interpret the group as a set of integer values, sequentially numbered from 

0 to 2n - 1, for example: {0, 1, 2, 3} or {00h Olh, 02h, 03h, 04h, 05h, 06h, 07h, 

08h, 09h, OAh, OBh, OCh, ODh, OEh, OFh}. Groups containing 2n elements are called 

Galois Fields and denoted as follows: gf (2n). 

Group members without fail are subject to associative, commutative, and dis¬ 

tributive laws. However, they are processed in a way that might, at first glance, seem 

unnatural: 

□ The sum of any two group members is always present in this group. 

□ For any group member, designated as a, there always exists an identity member, 

which usually is denoted as e, and satisfies the following condition: 
a + e = e + a = a 

□ For each member a of a group there is an inverse member -a, so that 
a + (-a) == 0 

Let us start with the first thesis. Does this seem like gibberish to you? Suppose that 
we have the following group: {0, l, 2, 3}. Is it possible to obtain the number less 
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than or equal to 3 when calculating the value 2 + 3?! As it turns out, addition in Galois 
fields is carried out without accounting the carry, and the sum of two members of 
a Galois group is equal to: |c = (a + b) % 2% where the % operation stands for the cal¬ 

culation of the remainder from the division. As applied to our case: (2 + 3) % 4 == l. 
In mathematics, this operation is called modulo-4 addition, or congruence addition. 

Naturally, the following question will likely interest you: Does modulo addition 
find a practical application or is it used only in abstract theoretical construction? Good 
question. You mechanically carry out this operation many times each day without 
even noticing or thinking that this is exactly that operation — addition without taking 
carry into account. For instance, suppose that you woke up at 6 p.m. and then worked 
on your computer for 9 hours without pauses. Then you accidentally look at your 
watch. Provided that the watch actually shows exact time, what will the position of the 
hour hand be? Obviously, the required value represents the modulo-12 sum of 6 and 
9, which is equal to: (6 + 9) % 12 == 3. Here is an illustrative example of using Galois 
arithmetic. And now, as an experiment, let us subtract 6 from 3... (if you find this dif¬ 
ficult, just look at your watch). 

Now, let us proceed with the most important fact: Since the result of dividing one 
group member by another group member (naturally, a non-zero one), must be pres¬ 
ent in this group, then, despite the fact that this is an integer division, this operation 
will be precise. In fact, the result will be precise rather than approximate! Conse¬ 
quently, if c = a * b, then a == c/b. In other words, multiplication and division are 
unambiguously and consistently defined for all group members, except for the case of 
division by zero. At the same time, multiplication doesn’t result in the increase of the 
bit width! 

Naturally, this is not a standard multiplication (and, of course, not in every Galois 
field 2*2=4). However, Galois arithmetic must not necessarily correspond to "common 
sense.” The most important thing about it is that it works, and works rather well. The 
existence of hard disks, CD-ROM/DVD drives is the best confirmation of this fact, 
since they all use this arithmetic for specific purposes of one sort or another. 

As was already mentioned, modulo-2 Galois fields have become the most wide¬ 
spread in computing. This is because these fields are the most natural from machine 
processing point of view, since it is binary by the nature. 

To implement Reed-Solomon coder/decoder, we will need four basic arithmetic 
operations: addition, subtraction, multiplication, and division. These operations will be 

covered in detail in the following few sections. 

Addition and Subtraction in Galois fields 

Modulo-2 addition in Galois fields is identical to subtraction, and is implemented by 
the xor bitwise operation. This aspect was already discussed when studying polynomial 
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arithmetic. Therefore, we will simply provide an example of software implementation 
of the addition/subtraction function: 

Listing 2.12. The function implementing addition/subtraction in Galois fields 

// This function returns the result of modulo-2 addition (subtraction) 

// of two polynomials a and b 

int gf_sum(int a, int b) 

{ 

return a A b; 

} 

Multiplication in Galois Fields 

Having opened an elementary school math textbook, we will read there that multipli¬ 
cation represents the operation of addition repeated a number of times. If we have al¬ 

ready learned how to carry out addition in Galois fields, should we feel confident that 
the multiplication function won’t cause us any serious difficulties? Unfortunately, no. 

I always knew that two multiplied by two equals four. However, I never believed this to 
be an absolute truth. After encountering Galois fields for the first time, I understood 
how right I was1. As it turns out, there are other kinds of mathematics where two mul¬ 
tiplied by two is not equal to four, and the multiplication operation is not defined us¬ 
ing addition, but, rather, is based on quite a different concept. 

In fact, if try to "wrap” the gf_sum function into the loop, we will get just the same 
addition, defined in a different way: a * b will be equal to a, if b is even, otherwise it 
will be equal to zero. Who needs this type of multiplication? Actually, the function im¬ 
plementing "real” Galois multiplication is so complicated and resource-consuming 
that to simplify its implementation, it is necessary to transform polynomials into index 
form, and then add indexes by modulo of gf, after which it is necessary to carry out 
an inverse transformation of the sum of indexes into polynomial form. 

1 In other words, when I press the button switch, I know that the light will be switched on. How¬ 
ever, I am not sure (suppose that the electrician has cut the wires, or the light bulb has fused, etc.) 
The same thing is typical also for math. That set of trash that most of us are fed up from the secon¬ 
dary school, or even from colleges, is not a math. This is a set of voodoo rites that students must 
repeat to obtain the result, but which do not allow to grasp the underlying ideas — zen of math. 
I don’t know whether or not this is for the better, but I feel it my duty to remind you that ’’math” 
taught in many educational institutions has no more relation to the real math than programming 
has to torturing the mouse when struggling with Microsoft Word or installing Windows. 
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What is the index? The index is the exponent of the power of two, which produces 

the required polynomial. For instance, the index of polynomial 8 is equal to 3 (23 = 8), 

while index of polynomial 2 is equal to 1 (21 = 2). It is quite easy to show that 

a * b = 21 + 2j = 2(i+j). In particular, 2 * 8 = 23 + 21 = 2(3+1) = 44 = 16. Now let 

us compose the following table and carry out some experiments with it: 

Table 2.2. Polynomials (left column) and powers of two corresponding 
to them (right column) 

i alpha_of[i] 

001 0 

002 1 

004 2 

008 3 

016 4 

Up to this moment, we operated with the concepts of the customary arithmetic. 

Therefore, about two thirds of the table fields remained blank. In fact, equations such 

as 2X = 3 have no integer solutions. Therefore, some indexes do not correspond to any 

polynomials! However, since the number of polynomials of any Galois field is equal to 

the number of possible indexes, we can map them to one another in specifically pre¬ 

defined way, without paying any attention to the fact that this action makes no sense 

from the customary mathematical point of view. The specific scheme of mapping can 

be chosen in any way. The only fact that matters here is that the mapping must be 

consistent., e.g., that it must satisfy all above-listed requirements of the groups (see 

"Galois Fields”). 

Naturally, since the final result depends directly on the chosen mapping scheme, 

both parties (Reed-Solomon coder and decoder) must observe specific agreements. 

However, different Reed-Solomon coders/decoders can use different mapping 

schemes, incompatible to one another. 

In particular, the Reed-Solomon decoder built into the CD-ROM drive carries out 

multiplication according to the table provided in Listing 2.13. Having encountered 

such a table in the disassembled listing of the program being investigated, you’ll be 

able to quickly and reliably identify all functions that are using it. 
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Listing 2.13. Look-up table for GF(256). The leftmost column specifies polyno¬ 
mials/indexes (designated as ±), the second column represents the table of 
powers of the trivial polynomial 2 (designated as alpha), the third column con¬ 
tains indexes corresponding to the current polynomial (designated as index) 

i alpha index i alpha index i alpha index 
000 001 -1 047 035 69 094 113 70 
001 002 0 048 070 29 095 226 64 
002 004 1 049 140 181 096 217 30 
003 008 25 050 005 194 097 175 66 
004 016 2 051 010 125 098 067 182 
005 032 50 052 020 106 099 134 163 
006 064 26 053 040 39 100 017 195 
007 128 198 054 080 249 101 034 72 
008 029 3 055 160 185 102 068 126 
009 058 223 056 093 201 103 136 110 
010 116 51 057 186 154 104 013 107 
011 232 238 058 105 9 105 026 58 
012 205 27 059 210 120 106 052 40 
013 135 104 060 185 77 107 104 84 
014 019 199 061 111 228 108 208 250 
015 038 75 062 222 114 109 189 133 
016 076 4 063 161 166 110 103 186 
017 152 100 064 095 6 111 206 61 
018 045 224 065 190 191 112 129 202 
019 090 14 066 097 139 113 031 94 
020 180 52 067 194 98 114 062 155 
021 117 141 068 153 102 115 124 159 
022 234 239 069 047 221 116 248 10 
023 201 129 070 094 48 117 237 21 
024 143 28 071 188 253 118 199 121 
025 003 193 072 101 226 119 147 43 
026 006 105 073 202 152 120 059 78 
027 012 248 074 137 37 121 118 212 
028 024 200 075 015 179 122 236 229 
02 9 048 8 076 030 16 123 197 172 
030 096 76 077 060 145 124 151 115 
031 192 113 078 120 34 125 051 243 
032 157 5 079 240 136 126 102 167 
033 039 138 080 253 54 127 204 87 
034 078 101 081 231 208 128 133 7 
035 156 47 082 211 148 129 023 112 
036 037 225 083 187 206 130 046 192 
037 074 36 084 107 143 131 092 247 
038 148 15 085 214 150 132 184 140 
039 053 33 086 177 219 133 109 128 
040 106 53 087 127 189 134 218 99 
041 212 147 088 254 241 135 169 13 
042 181 142 089 225 210 136 079 103 
043 119 218 090 223 19 137 158 74 
044 238 240 091 163 92 138 033 222 
045 193 18 092 091 131 139 066 237 
046 159 130 093 182 56 140 132 49 



Using this table, you can easily carry out the transform from the polynomial form 

into the index form, and vice versa. How should you use this table? Let us assume that 
we need to multiply the polynomials 69 and 96. Let us find the number 69 in column i. 
The corresponding alpha value is 47. Let us memorize it (or write it down) and pro¬ 

ceed with the number 96, for which the value of alpha is equal to 217. Let us carry out 
a modulo-256 addition of 47 and 217. As a result, we will get the following value: 
(217 + 47) % 256 = 8. Now, let us transform the result from the index form into the 

polynomial form. To do so, it is necessary to find the number 8 in column i and its 
corresponding polynomial — 3 — in column index. (If we carry out an inverse opera¬ 
tion, by dividing 3 by 69, we will get 96, which proves the consistency of multiplication 
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and division operations, as well as in the entire Galois arithmetic as a whole). This is 

rather fast, although sometimes it is unclear why the table is composed in this way 
rather than in some other. The worst thing is that the trustworthiness of the result 
cannot be felt intuitively, because all of these concepts represent a pure abstraction. 
This significantly complicates program debugging (it is rather difficult to debug any¬ 

thing where you don’t fully understand the operating principle). 
Still, it is not necessary to enter manually the multiplication table from the key¬ 

board. It is possible to generate this table automatically, on the fly, at program execu¬ 
tion time. A possible implementation of such a generator looks as follows: 

Listing 2.14. The procedure of generating the lookup table of quick polynomial 
multiplication 

#define m 8 // The exponent of the RS polynomial 

// (equal to 8, according to the ECMA-130 

// standard) 

#define n 255 // n=2**m-l 

// (length of the codeword) 

#define t 1 // number of errors to be corrected 

#define k 253 // k = n-2*t 

// (length of the data word) 

// prime generator polynomial 

// According to ECMA-130: P (x) = x8 + x4 + x3 + x2 + 1 

int p[m+1]={1, 0, 1, 1, 1, 0, 0, 0, 1 }; 

int alpha_to[n+1]; // table of exponents 

// of the prime member 

int index_of[n+1]; // index table 

// for fast multiplication 

//- 
// Generating the look-up table for fast multiplication 

// for GF(2Am) on the basis of prime generator polynomial 

// from p[0] to p[m]. 

// 
// Look-up table: 

// index->polynomial from alpha to[ ] 

// contains j=alphaAi 

// where alpha is the trivial member, 

// usually equal to 2 

// a A - operation of raising to the power 
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// (not XOR!); 

// 
// polynomial form -> index from 

// index_of[j=alphaAi] = i; 

// 
// © Simon Rockliff 
//- 

generate_gf() 

{ 

int i, mask; 

mask = 1; alpha_to[m] = 0; 

for (i = 0; i < m; i++) 

{ 

alpha_to[i] = mask; 

index_of[alpha_to[i]] = i; 

if (p[i] != 0) alpha_to[m] A= mask; 

mask <<= 1; 

} index_of[alpha_to[m]] = m; mask >>= 1; 

for (i = m+1; i < n; i++) 

{ 

if (alpha_to[i-1] >= mask) 

alpha_to[i] = alpha_to[m] A ((alpha_to[i-1]Amask)<<1) ; 

else 

alpha_to[i] = alpha_to[i-1]<<1; 

index_of[alpha_to[i]] = i; 

} index_of[0] = -1; 

} 

The multiplication function itself looks rather trivial. In fact, it fits within five lines 
of code. In most software implementations of Reed-Solomon coder/decoder that 
I have seen, the division operation is not even implemented as a separate procedure 

but, rather, is carried out directly where it is called. 

Listing 2.15. A function of fast multiplication in Galois Fields using a table 

// The function returns the result of multiplication 

// of two polynomials in Galois fields 

int gf_mul(int a, int b) 
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int sum; 

if (a == 0 || b == 0) return 0; 

sum = alpha_of[a] + alpha_of[b]; 

if (sum >= GF-1) sum -= GF-1; 

return index_of[sum]; 

} 

// Some optimization 

// won't hurt. 

// Calculating the sum 

// of polynomial indexes 

// Bringing the sum to 

// the GF module 

// Transforming the 

// result to the 

// polynomial form 

// and return the result 

Division in Galois Fields 

Division in Galois fields is carried out practically the same way as multiplication, with 

the only exception that the indexes are not added but, rather, subtracted from one an¬ 
other. Actually, a/b == 2i/2j == 2(i_j). To transform this presentation from polyno¬ 

mial to index form and vice versa, the above-provided look-up table can be used. 
Naturally, do not forget about the fact that, however perverse Galois fields might 

seem, even abstract arithmetic doesn’t allow division by zero. Therefore, the division 

function must be supplied with the appropriate check. 

Listing 2.16. The function of fast division of polynomials in Galois fields 

// This function returns the result of division of two 

// polynomials, a and b, in Galois fields. 

// In case of attempt of division by zero, the function 

// returns -1. 

int gf_div(int a, int b) 

{ 

int diff; 

if (a == 0) return 0; // Some optimization 

// won't hurt. 

if (b == 0) return -1; // Division by zero 

// is not allowed! 

diff = alpha_of[a] — alpha_of[b]; // Calculating the 

// difference of indexes 

ff += GF-1; // Bringing the 

// difference to the 

// GF module 
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return index_of[diff]; // Transforming the 

// result to the 

// polynomial form 

// and returning 

// the result 

Simplest Practical Implementations 

Ancient-model hard disks developed by IBM represent a good example of the imple¬ 
mentation of the Reed-Solomon coder/decoder. The IBM 3370 model had very simple 
and illustrative Reed-Solomon coder/decoder of the (174,171) type in the Galois field 

gf(256). In other words, this coder/decoder operated with 8-bit cells (28=256), and 
there were 3 bytes of checksum field per 171 data bytes. As a result, this produced 
a codeword having the length of 174 bytes. As we will see later, all three checksum 
bytes were calculated absolutely independently from one another. Consequently, the 

Reed-Solomon coder/decoder operated only with one byte, which significantly simpli¬ 
fied its architecture. 

In contemporary hard disks, the Reed-Solomon coder/decoder has become signifi¬ 

cantly more complicated, and the number of check bytes has grown immensely. 
As a result, in implementations of this Reed-Solomon coder/decoder, one has to oper¬ 
ate with numbers of unnatural lengths (about 1,408 bits or more). Consequently, the 

source code bristled with a thick layer of additional checks, loops, and functions that 
significantly complicate its understanding. Furthermore, most manufacturers of com¬ 

puter hardware have recently migrated to the hardware implementations of Reed- 
Solomon coders/decoders, which are implemented entirely by a single chip. In other 
words, despite all of our respect for technological progress, it is much better to study 
the basic operating principles of the Reed-Solomon coders/decoders on the examples 
of ancient models. 

The listing provided below shows a fragment of the original code of the firmware 
for the IBM 3370 hard disk: 

Listing 2.17. The key fragment of the Reed-Solomon coder/decoder from 
the original code of the IBM 3370 hard disk firmware 

for (sO = si = sml = i = 0; i < BLOCK_SIZE; ++i) 

{ 

sO = sO A input[i]; 

si = GF_mult_by_alpha[ si A input[i]]; 

sml = GF_muIt_by_alpha_inverse[sml A input[i]]; 
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Listing 2.18. The key fragment of the Reed/Solomon coder/decoder from the 
IBM 3370 hard disk firmware 

err i = GF log base alpha[ GF divide[si][sO] ]; // Calculating 

// the error 

// syndrome 

input[err i] A= sO; // Correcting the 

// erroneous byte 

Can we understand how it works? With regard to the sO variable, everything is 

clear: This variable stores the checksum calculated according to the trivial algorithm. 

As you probably remember, addition in Galois fields is carried out by logical xor 

operation. Therefore, sO += input [i]. 

The goal of the si variable is more difficult to clarify. To understand the idea of 

its transformations, we must know the contents of the GF_mult_by_alpha table. 

Although, for the sake of brevity, this function is not provided here, it is easy to guess 

its goal because it has the speaking name: the contents of si are added to the next byte 

of the data flow being controlled, and then multiplied by so-called primitive term> 

designated as alpha, and equal to 2. In other words, si = 2 * (si + input [i]). 

Now, let us assume that one of the bytes of the data flow becomes inverted 

(let us designate its position as err_i). Then the index of the inverted byte can be 

determined by the trivial division of si by sO. Why is this the case? In fact, 

si = 2 * (si + input [i]) is nothing other than the multiplication of the data word 
by the generated polynomial dynamically generated on the basis of its primitive mem¬ 

ber alpha. The checksum of the data word stored in the sO variable actually represents 

the same data word, simply represented in more "compact" form. As already men¬ 

tioned, if the error took place in position x, then the remainder generated by the divi¬ 

sion of the codeword by the generated polynomial will be equal to k = 2X. Now, it only 

remains to calculate x by the given k, which in our case is carried out by means of 

looking up the GF_log_base_alpha table, which stores the pairs of mappings between k 

and 2X. As long as the position of the erroneous byte is detected, it can be corrected by 

means of xoRing it with the calculated checksum sO (input [err_i] A= so). Naturally, 

this is true only for single errors. The above-described algorithm is unable of correct¬ 

ing errors comprising two or more corrupted bytes per data block. In fact, the third 

byte of the checksum — sml — is present for exactly this purpose. It protects the de¬ 

coder from "incorrect" attempts at error correction, i.e., prevents error correction 

when the number of errors exceeds 1. If the expression sl/sO == sml * sO becomes 

false, then the disk controller can record the fact of multiple errors, but should report 

that these errors cannot be recovered. 
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As is well-known, the defects of a magnetic surface tend to group errors rather 

than cause single errors. To compensate for the weakness of the error-correction algo¬ 

rithm, IBM engineers resorted to byte interleaving. The IBM 3370 hard disk had the 
interleave of 3:1, which means that the first byte of the first block goes first, followed 

by the first byte of the second block, then by the first byte of the third block, and only 
after that — by the second byte of the first block. This trick increased the corrective 

capabilities of the hard disk from a single error to the sequence of three corrupted 
bytes... However, if bytes that were not directly adjacent to one another were subject to 

corruption, then the corrective capability once again dropped down to one corrupted 
byte per block. However, the probability of such an event was significantly lower. 

Naturally, this kind of algorithm can be implemented not only in hard disks. 
By varying the block size and interleave factor, you’ll be able to ensure more or less 

strong protection having higher or lower information redundancy. In fact, let us sup¬ 

pose that we have N sectors on the disk. Then, having divided them into blocks 
containing 174 sectors each and having dedicated 3 sectors per block for storing the 

checksum, we will be able to restore at least N/174 disk sectors. Based on an average 
disk capacity of 100 GB (which corresponds to 209,715,200 sectors), we will be able to 

restore up to 1,205,259 sectors — even in the case of their total physical destruction. 

At the same time, only 2 percent of disk space will be reserved for storing checksums. 

Most people would agree that the situations, when the destruction of a hard disk is so 
fast that correcting capabilities of the Reed-Solomon code prove to be insufficient for 

restoring information, are quite rare (provided, of course, that incipient disk corrup¬ 
tion is noticed in due time, and provided that the interleave factor is chosen correctly — 

so that sectors belonging to the same plate of the hard disk were served by different 
correcting blocks. Otherwise, the corruption of the surface of one disk plate results 

in a group error that cannot be recovered by this algorithm). 
What should we do if the entire hard disk is damaged? In this case, the most 

reasonable approach is to create an array of several disks storing useful information 

mixed with correcting codes. The main drawback of such an approach is its ineffi¬ 

ciency with arrays comprising a small number of hard disks. The reasonable minimum 
is as follows: four data disks and one disk for check information. In this case, the loss 

of any of the data disks will be compensated by the check disk that remained func¬ 

tional. The damaged check disk can easily be replaced by a new one, and all check 
codes will be recalculated. However, if two disks fail simultaneously, this means a ca¬ 
tastrophe. An array containing 15 disks, among which 12 are data disks, and 3 disks 

are reserved for check codes, provides a significantly higher level of fault tolerance. 
It tolerates simultaneous failure of any two disks, and under favorable circumstances, 

even simultaneous failure of three disks can be overcome. 
Actually, there is nothing new in all this information. In fact, appropriate RAID 

controllers are available in practically any computer store. However... I can hardly 
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imagine the cost of a RAID controller of level 15, and I am not sure that it will be pos¬ 

sible to make it work (based on my own experience, RAID controllers even of basic 
levels are extremely error-prone, whimsical, and have extremely high requirements 

both to hardware and to the OS environment). Finally, practically all RAID controllers 
require either absolutely identical disks or, at least, ones that are very similar in their 

characteristics and/or interfaces). What if they are not available? 

Software implementation of RAID, actively promoted by the author of this book, 
is free from all of the above-listed drawbacks. You can use disks of different geometry 
and even of different capacity. At the same time, nothing limits you to concentrating 
them in a single location. On the contrary, disks can be accessed even via the network. 
Furthermore, it is not necessary to reserve the entire disk for RAID storage. You can 
arbitrarily dedicate the desired part of the disk space for this purpose. 

How can we use this in practice? The first idea that comes to mind is to use part 
of the hard disk space for storing redundant information that will allow the restoration 
of the disk contents in the event of a failure. If several computers are joined to form 
a network then, under conditions of relatively low overhead, we will be able to restore 
any of the hard disks in any computer connected to a network, even if its information 
is totally destroyed. This is thanks only to the redundant information distributed 
among all of the other computers. It would be hard to conceive of a more reliable sys¬ 
tem for information storage! This scheme was implemented by the author in the LANs 
of several enterprises. It has proven its high survivability, flexibility, and a wide range 
of functional capabilities. The need to constantly carry out backups of the hard disk 
contents was automatically eliminated. This is more than urgent under conditions of 
peer-to-peer networks, where there is no dedicated server! On the other hand, such 
networks exist, and they are not rare. (No, I do not promote the development of this 
type of network or claim that it is a good solution. I am simply noting the fact that 
they exist and are not going to be eliminated totally in the nearest future.) 

The only drawback of software RAID implementation is its low performance. 
In particular, by installing software RAID on a server processing thousands of queries 
per second and modifying a large number of files intensively, you won’t get a perform¬ 
ance gain, but the concept of "performance” itself is rather relative. Having a suffi¬ 
ciently fast processor, it is possible to carry out information encoding/decoding on the 
fly without any losses in throughput! On the other hand, if read operations dominate 
over write operations, the installation of software RAID is a natural solution, since the 
integrity control of the information being read is carried out at the hardware level of 
the drive itself. Consequently, when using systematic encoding (i.e., data words sepa¬ 
rate from parity bytes), the Reed-Solomon decoder doesn’t need to interfere with this 
process, and its help is needed only when part of the information is badly damaged. 
Realistically, this doesn’t happen often. Thus, it is not worth paying a lot to firms spe¬ 
cializing on hardware RAID implementations, especially since they don’t provide 
home users and small businesses the attention that they deserve. 
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Reed-Solomon Codes in Practical Implementations 
In previous sections, we have considered the basic mathematics that serve as the 
foundation for Reed-Solomon codes. We have also investigated the simplest 
coder/decoder, capable of correcting single errors and working with two parity sym¬ 
bols. These correcting capabilities are catastrophically insufficient for the overwhelm¬ 
ing majority of problems. Therefore, it becomes necessary to implement a more pow¬ 
erful coder/decoder. 

The coder/decoder considered in this section is highly configurable and can be 
tuned for operation with any number of parity symbols. This means that under condi¬ 

tions of reasonable redundancy, it is capable of correcting any imaginable number 
of errors. However, this flexibility and universality comes with a cost. Therefore, the 
design of such a decoder is about 100 times more difficult. The independent develop¬ 
ment of Reed-Solomon decoders requires a fundamental knowledge of higher 
mathematics in general, and the nature of correcting codes in particular. Therefore, do 

not be afraid or confused if the material provided in this section is not easily under¬ 
standable. These topics are difficult and there is no simple way to explain them. 

On the other hand, for practical usage in correcting codes, it is possible to simply 
compile the source codes of the Reed-Solomon coder/decoder provided here without 
obtaining further insight into it. The same approach is the case if you use any ready- 
to-use library from third-party developers. As an alternative example, the concluding 
part of this chapter will briefly describe the interface of the ElByECC.DLL library 

developed by the Elaborate Bytes company and distributed along with the popular 
Clone CD program. The best-known CD burner everywhere, Ahead Nero 
Burning ROM, has the similar library (NEWTRF.DLL). 

Legend 
Let us recall the main notation used in this chapter. The number of characters of the 

message being encoded (also called the data word) according to generally adopted 
agreement is designated by the letter k; the complete length of the codeword including 
the data being encoded and parity characters is equal to n. Consequently, the number 
of parity characters is equal to n - k. The maximum number of recoverable errors is 

designated by t. Since two parity symbols are required for correcting a single error, 
the total number of parity characters is equal to 2t. The rs (n, k) expression describes 
a specific sort of Reed-Solomon correcting code, operating with n-symbol blocks, 
in which k symbols represent useful data, while all other symbols are used for 
parity symbols. 

The polynomial obtained on the basis of the primitive term a is known as the 

generated polynomial. 
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Encoder 
There are at least two types of Reed-Solomon codes: non-systematic and systematic en¬ 
coders. 

Non-systematic Reed-Solomon error-correcting codes are calculated by multiplying 
the data word by the generated polynomial. As a result, the codeword is generated that 
is absolutely different from the source information word and, therefore, not suitable 
for direct usage. For bringing the obtained data into their initial form, it is necessary to 
carry out the resource-consuming decoding operation, even if the data are not cor¬ 

rupted and do not require recovery! 
When using systematic encoding, however, the source data word remains without 

changes, while the correcting codes (often called parity characters) are added to its 
end. Thanks to this, the decoding operation is needed only in the event of actual data 
destruction. Computation of non-systematic Reed-Solomon codes is carried out by 
the division of the data word by the generating polynomial. At the same time, all sym¬ 
bols of the data word are shifted by n-k bytes to the left, while the 2t bytes of the re¬ 
mainder are written to the released positions (see Fig. 2.1). 

Since considering both types of encoders would require a lot of time, let us con¬ 
centrate all of our attention on systematic coders, which are the most popular. 

n symbols 
^- 

Original data RS codes 

k symbols 21 symbols 

RS(n, k) 

Fig. 2.1. Codeword structure 

From the architectural point of view, the encoder represents the set of shift registers, 
joined by means of integrators and multipliers, operating according to the rules of 
Galois arithmetic. The shift register represents the sequence of memory cells, called 

bits, each of which contains one element of a Galois field gf (q). The symbol, contained 
in a specific position, is transmitted to the output line as it leaves this position. Simul¬ 
taneously, the symbol from the input line is loaded into position. Replacement of 
symbols takes place discretely, at strictly defined time intervals, known as clocks. 

In hardware implementation of the shift register, its elements can be connected 
both sequentially and in parallel. In the case of sequential connection, the sending of 
a single m-bit symbol will require m clocks, while in implementations using parallel 
connection, this operation requires only one clock. 
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The low efficiency of software implementations of Reed-Solomon codes is due 
to the fact that the developer cannot connect elements of the shift register in parallel. 

On the contrary, software developers are forced to work with the bit width "enforced" 
by specific hardware architecture. However, developing a 4-element, 8-bit shift register 
of the parallel type on processors of the IA32 family is a realistic task. 

Circuits based on shift registers are usually called filters. The flow chart of a filter 
that carries out the division of a polynomial by a constant is shown in Fig. 2.2. Don’t 

be confused by the fact that division is implemented by means of multiplication and 
addition. This technique is based on solving the system of two recurrent equalities: 

(r) (r-1) (r-1) k-r 
Q (x) = Q (x) + R x 

n-r 

(r) (r-1) (r-1) k-r 
R (x) = R (x) - R x g(x) 

n-r 

Formula 2.1. Dividing a polynomial by a constant by means of multiplication and addition 

Here: Q(r) (x) and R(r) (x) are the quotient and remainder at the r-th step or re¬ 
cursion, respectively. Since addition and modulo-2 computation are identical, for im¬ 
plementing the divider, we need only two devices — addition and multiplication de¬ 
vices. The subtraction device is not necessary. 

After n shifts, the quotient will appear at the register output, while the register itself 

will contain the remainder, which represents the calculated parity symbols (they are the 
same as Reed-Solomon codes), while multiplication coefficients from gO to g(2t-l) 

directly correspond to the multiplication coefficients of the generated polynomial. 

Fig. 2.2. Structure of the simplest Reed-Solomon encoder 
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The simplest software implementation of this type of filter is provided below. 
It represents a ready-to-use Reed-Solomon encoder, suitable for practical use. It could 

certainly be improved if desired. However, in this case, the listing would become less 
compact and less illustrative. 

Listing 2.19. The source code for the simplest Reed-Solomon encoder 

/*- 
★ 

* Reed-Solomon encoder 

★ =========== 

* 

* The data being encoded are transmitted via the data[i] array, where i = 0... (k - 1), 

* and generated parity symbols are placed into the b[0] . . .b[2*t-l] array. 

* Source and resulting data must be represented in a polynomial 

* form (i.e. , in standard form of machine data representation) . 

* Encoding is carried out using feedback shift register, 

* filled with appropriate elements of the g[] array with the generated 

* polynomial inside. The procedure of generating this polynomial was already 

* discussed in the previous section. 

* The generated codeword is described by the following formula: 

* c (x) = data (x) *xA (n-k) + b (x) , where A stands for the operator of raising 

* the number into the power of exponent. 

* 

* Based on the source codes by 

* Simon'a Rockliff, from 26.06.1991 

* distributed according 

* to the GNU license 

-*/ 

encode_rs() 

{ 

int i, j; 

int feedback; 

// Initializing the parity bit field by zeroes 

for (i = 0; i < n - k; i++) b[i] = 0; 

// Processing all symbols 

// of the source data from right to left 

for (i = k - 1; i >= 0; i—) 

{ 

// preparing (data[i] + b[n — k -1]) for multiplication by g[i] 
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// i.e., adding the next "captured" symbol of the source 

// data to the least significant symbol of the parity bits 

// (corresponding to the b2t-l register, see Fig. 2.2) 

// and converting it into the index form, 

// storing the result in the feedback register. 

// As was already pointed out, the sum of the two indexes is 

// the product of polynomials. 

feedback = index_of[data[i] A b[n — k - 1]]; 

// Are there any more symbols for processing? 

if (feedback != -1) 

{ 

// shifting the chain of bx registers 

for (j = n-k-1; j>0; j—) 

// If the current coefficient g is a real one 

// (i.e., non-zero) coefficient, then 

// multiplying feedback by the appropriate g coefficient 

// and adding it to the next element of the chain 

if (g[j]!=—1) b[j]=b[j—1]Aalpha_to[(g[j]+feedback)%n]; 

else 

// if the current coefficient g is equal to zero, 

// then carrying out only shift without 

// multiplication, by moving 

// the character from one m-register 

// to another m-register 

b[j] = b[j—1 ]; 

// Looping the output symbol to the leftmost bO-register 

b[0] = alpha_to[(g[0]+feedback)%n]; 

} 

else 

{ // Division is complete, 

// carrying out the last shift of the register, 

// the quotient (which will be lost) 

// appears at the register output, 

// while the register itself 

// will contain the required remainder. 

for (j = n-k-1; j>0; j —) b[j] = b[j—1 ] ; b[0] = 0; 



Chapter 2: Power of Reed-Solomon Codes 85 

Decoder 
Decoding of Reed-Solomon codes is a complicated problem, the solution to which re¬ 
sults in a bulky, complicated, and extremely complex code requiring the developer to 
have extensive knowledge of many areas of higher mathematics. A typical decoding 
scheme known as auto-regressive spectral decoding method, comprises the following steps: 

1. Determining error syndrome (syndrome decoder). 

2. Building error polynomial, carried out either using the highly efficient, but rather 
sophisticated Berlekamp-Massey algorithm, which is hard to implement, or using 
the simple, but very slow Euclidean algorithm. 

Fig. 2.3. Scheme of auto-regressive spectral decoder 
for Reed-Solomon correcting codes 
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3. Finding the roots of this polynomial, which is usually carried out by means of 

trivial try-out (Chien search algorithm). 

4. Determining the error type, which is carried out by building the bit mask calcu¬ 

lated on the basis of Forney’s algorithm or any other algorithm of matrix inversion. 

5. Correcting erroneous symbols by means of superimposing the mask onto the data 

word and sequentially inverting all corrupted bits via xor operation. 

It is important to point out that this decoding scheme is neither the only one nor, 
probably, the best one. However, it is universal. In practice, there are about ten various 
decoding schemes, absolutely different from each other. As a rule, the choice of spe¬ 

cific scheme depends on which decoder part is implemented programmatically, and 
for which part hardware implementation is chosen. 

Syndrome Decoder 

Roughly speaking, syndrome is the remainder from the division of the codeword c (x) by 

the generator polynomial g(x). If this remainder is equal to zero, the codeword is con¬ 
sidered to be correctly transferred. A non-zero remainder indicates that there is at least 
one error. The remainder from the division is the polynomial, independent from the 

source message, which is determined exclusively by the nature of the error. 
The received codeword v comprising components vi = ci + ei5 where i = 0, 

n - l, represents the sum of the codeword c and error vector e. The goal of decoding 
is the separation of the codeword from the error vector, which is decried by the syn¬ 

drome polynomial and calculated according to the following formula: S. = v(aj+j01), 
where j ranges from 1 to 2t, and a represents the prime member "alpha,” which we 

have discussed earlier. Once again, we express the division function via multiplication, 
because division is a very inefficient operation from the performance point of view. 

A flow chart of the device that carries out syndrome computation is presented in 
Fig. 2.4. As can be seen from this illustration, it represents a typical filter (compare it to 
the scheme shown in Fig. 2.2), therefore, it doesn’t require any additional comment. 

Received data 

Fig. 2.4. Flow chart of the syndrome computation circuit 
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Computation of the error syndrome is carried out iteratively, so that the compu¬ 

tation of the resulting polynomial (also called the answer polynomial) is completed di¬ 

rectly at the moment when the last parity symbol passes through the filter. The total 

number of passes of the data being decoded through the filter is equal to 2t — one 

pass per symbol of the resulting polynomial. 

The example of the simplest software implementation of the syndrome decoder is 

provided in Listing 2.2 and is much more illustrative than any verbal description. 

Error Locator Polynomial 

The obtained syndrome describes the error configuration, but it still doesn’t specify, 

which symbols of the received message were corrupted. Actually, the power of the 

syndrome polynomial equal to 2t is significantly lower than the power of the message 

polynomial, which is equal to n, and there is no direct correspondence between their 

coefficients. The polynomial that has coefficients directly corresponding to the coeffi¬ 

cients of corrupted symbols is called the error locator polynomial and, according to 

commonly adopted agreement, is designated by A (lambda). 

If the number of corrupted symbols does not exceed t, the syndrome and error lo¬ 

cator are related by unambiguous mapping, which can be expressed by the following 

formula: GCD[xn-i, E(x)] = A(x). Computation of the locator is reduced to the 

problem of finding the greatest common divisor. As a matter of fact, this problem was 

successfully solved by Euclid, and can be easily implemented both at the software and 

at the hardware level. However, the simplicity of implementation pays a price. In this 

case, the performance is sacrificed for simplicity, because the algorithm is very ineffi¬ 

cient. In practice, the more efficient, but, at the same time, more sophisticated 

Berlekamp-Massey algorithm is used. A detailed description of this algorithm can be 

found in Volume 2 of the "Art of Programming" by Donald Knuth (see also "Theory 

and Practice of Error Control Codes" by Richard Blahut). The algorithm is reduced to 

the task of building a chain of shift registers with linear feedback, and, in its essence, is 

a kind of auto-regression filter, the multipliers in the vectors of which specify the 

polynomial A. 

A decoder created according to such an algorithm requires no more than 3t mul¬ 

tiplication operations in each iteration, and the total number of iterations doesn’t ex¬ 

ceed 2t. Thus, the solution to this problem requires no more than 6t2 multiplication 

operations. In fact, the computation of the locator is reduced to solving the system of 

2t equations with t unknown quantities — one equation per symbol of the syndrome. 

Unknown terms are positions of the corrupted symbols in the codeword v. As can be 

seen easily, if the number of errors exceeds t, the system of equations has no solution. 

In this case, it becomes impossible to recover the corrupted information. 
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The flow chart of the Berlekamp-Massey algorithm is shown in Fig. 2.5, and its 

complete software implementation can be found on the companion CD. 

Yes 

▼ 

Fig. 2.5. Flow chart of the Berlekamp-Massey algorithm 
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Polynomial Roots 

From what we know of the error locator polynomial, its roots determine the location 
of corrupted symbols in the received codeword. Now it only remains to find these 
roots. Most frequently, this is accomplished using the Chien search procedure, which 
by its nature is analogous to the inverse Fourier transform. In fact, it is reduced to ex¬ 
haustive search and trying of all possible variants. All 2m possible symbols, one by one, 
are substituted into the locator polynomial, and then the polynomial is computed. 
If the result is zero, then the required roots have been found. 

Data Recovery 

Thus, we know, which symbols of the codeword are corrupted. But, for the moment, 
we are not prepared to answer how. Using the syndrome polynomial and roots of the 
locator polynomial, it is possible to determine the character of corruption for each 

of the corrupted symbols. As a rule, the Forney algorithm is used for this purpose. 
This algorithm comprises two stages: first, by means of convoluting the syndrome 

polynomial by the locator polynomial A, we obtain some intermediate polynomial, 

conventionally designated as Q. Then, based on the Q-polynomial, the zero error location 

is computed, which, in turn, is divided by the derivative of the A-polynomial. 
As a result, the bit mask is obtained, in which each of the set bits corresponds to the 
corrupted bit. To restore the codeword to its initial state, all corrupted bits must be in¬ 
verted, which is achieved by means of a logical xor operation. 

At this point, the procedure of decoding the received codeword can be considered 
accomplished. It only remains to discard n-k parity symbols, and the obtained data 
word is ready for use. 

Source Code of the Decoder 

The source code of a fully functional Reed-Solomon decoder, supplied with the nec¬ 
essary number of comments can be found on the companion CD. If you have difficulties 
when analyzing this listing, refer to the flow charts presented in Figs. 2.3, 2.4, and 2.5. 

Interface to the EIByECC.DLL library 
Software implementation of the Reed-Solomon encoder/decoder provided in List¬ 

ings 2.19 and on the companion CD is sufficiently illustrative. However, it is charac¬ 

terized by very low performance and requires optimization. As an alternative variant, 

it is possible to use ready libraries supplied by third-party developers, included in 

software products in any way related to processing Reed-Solomon error-correction 

codes. The list of such products includes utilities for CD copying/burning/restoration, 
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drivers for tape drives (from streamer to ARVID), various telecommunication com¬ 

plexes, etc. 

As a rule, all of these libraries are an integral part of the software product itself, 

and, therefore, are not documented in any way. Restoring the prototypes of the inter¬ 
face functions is a non-trivial task, requiring the investigator not only to have the dis¬ 
assembling skills, but also a knowledge of higher mathematics, otherwise the sense of 
all bit manipulations will remain unintelligible. 

Is such disassembling legal? In fact, the disassembling of third-party software 

products is prohibited, but is still legal In this case, it is appropriate to provide the 
analogy with unsealing your TV set, which results in voiding the warranty, but cannot 
be prosecuted by law. In just the same way, no one prohibits you to call the functions 
of someone else's library from your program. Distributing this library as part of your 
software product is illegal. However, what prevents you from asking the user to install 
this library on his own? 

Provided below is a brief description of the most important functions of the 
ElByECC.DLL library included as part of the well-known copier of protected CDs — 
Clone CD. The shareware copy of this product can be downloaded from 

http://www.elby.ch/. The Clone CD product itself will be functional only for 21 days, 

after which it will require you to register the copy. However, there are no limitations 
on the usage of the ElByECC.DLL library. 

Despite the fact that the ElByECC.DLL is oriented towards operation with sectors 
of CDs, it is also suitable for other purposes, for instance, for building fault-tolerant 

disk arrays, mentioned earlier in this chapter. 
A brief description of the main functions of this library is provided below. 

Linking the ElByECGDLL Library to Your Programs 

There are at least two methods of linking DLLs to your programs. When using 

dynamic linking, addresses of the required functions are determined by means 
of GetProcAddress calls. In this case, the ElByECC.DLL library itself must be loaded 
previously using LoadLibrary. For instance, this may look as follows (error handling is 

omitted for the sake of simplicity): 

Listing 2.20. Dynamic loading of the ElByECC.DLL library 

HANDLE h; 

int (_cdecl *CheckECCAndEDC_Model) (char *userdata, char *header, char *sector); 

h=LoadLibrary (’’ElbyECC. dll”) ; 

CheckECCAndEDC_Mode1 = GetProcAddress(h, ”CheckECCAndEDC_Model”); 
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Static linking assumes that a special lib-file is present, which can be automatically gener¬ 

ated by the implib utility supplied as part of Borland C++ of any suitable version. This is 
a command-line utility called as follows: "impiib.exe -a ElByEcc.lib ElByEcc. lib". 

GenECC AndEDC_Mode 1 

The GenECCAndEDC_Mode 1 function generates error-correcting codes on the basis of 
a 2048-byte block of user data. This function has the following prototype: 

Listing 2.21. The prototype of the GenECCAndEDC_Mode1 function 

GenECCAndEDC_Model(char *userdata_src, // Pointer to the 2048-byte array 

char *header_src, // Pointer to the header 

struct RAW_SECTOR_MODE1 *raw_sector_model_dst) 

□ userdata_src is the pointer to the 2,048-byte block of user data, for which it is 
necessary to compute the error-correction codes. The user data itself remains un¬ 
changed in the course of function execution. They are automatically copied to the 
buffer of the target sector, where they are supplemented by 104 + 172 parity bytes 
and 4 bytes of the checksum. 

□ header_src is the pointer to the 4-byte block containing the sector header. 
The first three bytes are taken for the absolute address written in the BCD form, 
while the fourth byte is responsible for the type of sector, to which it is necessary to 
assign the value 1, corresponding to the mode when correcting codes are enabled. 

□ raw_sector_model_dst is the pointer to the 2,352-byte block, in which the gener¬ 
ated sector will be written, containing 2,048 bytes of user data and 104+172 bytes 
of error-correction codes along with 4 bytes of the checksum. Raw sector is pre¬ 
sented by the following structure: 

Listing 2.22. Structure of the raw sector 

struct RAW SECTOR MODE1 

BYTE SYNC[12]; 

BYTE ADDR[ 3 ] ; 

BYTE MODE; 

BYTE USER_DATA[2048] 

BYTE EDO[4]; 

BYTE ZERO[8]; 

BYTE P [172] ; 

BYTE Q [ 104]; 

// Sync group 

// Absolute sector address 

// Sector type 

// User data 

// Checksum 

// Zeroes (not used) 

// P parity bytes 

// Q parity bytes 
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Provided that the function has been completed successfully, it returns a non-zero 
value, otherwise it returns zero. 

CheckSector 

The CheckSector function checks the integrity of the sector by the checksum, and re¬ 
stores it using Reed-Solomon redundant codes, if necessary. 

Listing 2.23. The prototype of the CheckSector function 

CheckSector(struct RAW_SECTOR ^sector, // Pointer to the sector buffer 

int DO); // Only checking/correcting 

□ sector — the pointer to the 2,352-byte data block containing the sector being 

tested. The sector is recovered on the fly, i.e., immediately when the error 
occurs. If the number of corrupted bytes exceeds the correcting capabilities of 

the Reed-Solomon codes, the source data remains unchanged. 

□ do — the flag, the zero value of which specifies that modifying the sector is pro¬ 
hibited. In other words, this value corresponds to the test only mode. A non-zero 

value allows data recovery, if they actually were corrupted. 

□ If the function terminates successfully, it returns a non-zero value. The function 
returns zero if the sector contains an error (in the test only mode) or if the data 
recovery has failed (when calling the function in the data recovery mode). 

To prevent possible ambiguity, it is recommended that you call this function in 
two steps. First — in the test mode for checking data integrity, and second, in the 
data recovery mode (if data recovery is needed). 

Final 

Provided below is an example of practical usage of error-correcting code, suitable for 
solving practical real-world tasks. 

Listing 2.24. An example of calling EIByECC.DLL functions from your program 

/*- 
★ 

* Demonstration of EIByEOC.nLL 

★ _==========_ 

★ 

* This program demonstrates working with EIP^EOC.DLL library, 

* by generating redundant Eeed-Solcmon codes on the basis of 
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* user data, and then deliberately corrupting and restoring them. 

* The number of bytes to be corrupted is passed in the first 

* acnmand-line parameter (6 by default) 

-*/ 

#include <stdio.h> 

#include "ElByECC.h" // Decompiled by MJmx 

#define _DEF_EMG 6 // Corrupt by default 

#define N_BYTES_DAMAGE ((argOl) ?atol (argv[l]) :_DEF_EMG) // How many bytes to corrupt? 

main (int argc, char **argv) 

{ 

int a; 

char stub_head [HEADER_SIZE]; // Sector header 

char user_data [USER_DATA_SIZE]; // User data area 

struct RAW_SECT0R_M0DE1 raw_sector_for_ctemge; // Sector for corruption 

struct RAW_SECT0R_M0DE1 raw_sector_for_ccmpre; // sector checksum. 

// TITLE 

//- 
printf(M= ElByECC.DLL usage demo example by KK\n") ; 

// Initializing user Hat-a 

//- 
printf ("user data initialize.") ; 

for (a = 0; a < USER_DA.TA_SIZE; a++) user_data [a] = a; // User_data init 

memset (stub_head, 0, HEADER_SIZE); stub_head[3] = 1; // src header init 

printf ("+OK\nM) ; 

// Generating Reed-Solcmon codes cn the basis of user data 

//- 

printf ("RS-code generate.") ; 

a = GenECCAndEDC_Model(user_data, stub_head, &raw_sector_for_damage); 

if (a = ElBy_SECTOR_ERROR) { printf ("-ERRCR! \x7\n"); return -1;} 

memcpy (&raw_sector_for_ccmpre, &raw_sector_for_damage, RAW_SECTCR_SIZE) ; 

printf ("+OK\nM) ; 

// Intentionally corrupting user data 

//- 

printf ("user-data %04d bytes damage.", N_BYTES_DAMAGE) ; 

for (a=0; a<N_BYTESJI)AiyiAGE; a++) raw_sector_for_damage .USER_DATA [a] ^OxFF; 
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if (Imerrrarp (&raw_sector_for_damage, &raw_sector_for_ccmpre, RAW_SECTCR_SIZE)) 

printf ("-ERR: NOT DAMAGE YET\nM); else printf ("+CK\n") ; 

// Checking the integrity of user data 

//- 

printf ("user-data check."); 

a = CheckSector ((struct RAW_SECTOR*) &raw_sector_for_damge, ElBy_TEST_CNLY) ; 

if (a = ElBy_SECTOR_OK) { 

printf ("-ERR:data not damage\x7\n"); return -1;} printf (".data damge\n") 

// Recovering user data 

//- 
printf ("user-data recorder.") ; 

a = CheckSector ((struct RAW_SECTOR*) &raw_sector_for_damage, EIBy_REEAIR) ; 

if (a = ElBy_SECTOR_ERROR) { 

printf ("-ERR: NOT RECORVER YET\x7\n"); return -1; } printf ("+CK\n") ; 

// Checking if recovery was successful 

//- 

printf ("user-data recorver check."); 

if (memcrrp (&raw_sector_for_damage, &raw_sector_for_corpre, RAW_SECTCR_SIZE)) 

printf ("-ERR: NOT RECORVER YET\x7\n"); else printf ("+CK\n"); 

printf("+OK\n"); 

return 1; 
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Chapter 3: Practical Advice 
on Urgent System Recovery 

1. Run-time errors have the highest priority. Only another 

error with a higher priority can terminate error execution. 

2. Errors can ignore requests from the operating system. 

3. Requests from errors to the operating system cannot be 

ignored. 
4. When working with files, errors can use the file system 

of the basic OS and exploit its errors. 
5. On a computer with parallel architecture, several errors 

can be executed simultaneously. 

V.Tikchonov. "Theory of Errors” 

Applications, Illegal Operations, and Everything Else 
Low-level control over equipment requires extreme care and caution. Even the small¬ 
est error can result in the Blue Screen of Death (BSOD) or the abnormal termination 
of one or more applications. Driver developers and combat engineers have very much 
in common — neither of these professions is particularly forgiving of carelessness. 
ASPI and SPTI interfaces, despite their high-level wrappers, are equally aggressive. 
They can freeze the system or shut it down with or without pretext. It takes a long time 

to master the skill of writing stable and simple code. Until that level has been reached, 
the only guarantee of survival is the skill of recovering the system after critical errors 
and various kinds of malfunctions. 
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Different operating systems react to critical errors differently. For example, 
Windows NT reserves two regions of its address space for detecting stray pointers. 

One of them is located at the very "bottom" of the memory map and is intended for 
the "trapping" of zero pointers. Another is located between the heap and the memory 
area allocated for the operating system itself. It controls events that involve crossing 
the limits of the memory area allocated to user processes. Contrary to common opin¬ 

ion, it is in no way related to the WriteProcessMemory function (see MSDN article 
Q92764). Both regions take 64 K each, and any attempt of accessing them is inter¬ 

preted by the system as a critical error. In Windows 9x, there is only one 4 K region 
for tracing stray pointers. Therefore, this system has significantly weaker controlling 
capabilities than Windows NT. 

In Windows NT, the critical error screen (Fig. 3.1) contains the following infor¬ 
mation: 

□ The address of machine instruction that has caused the current exception 

□ A brief description of the exception category (or its code, if category is unknown) 

□ The exception parameters (address of invalid memory cell, type of operation, etc.) 

test.exe - Application Error 

The instruction at "0x3072lef2" referenced memory at "0xeeffef03M. The memory could not be "read". 

Click on OK to terminate the program 
Click on CANCEL to debug the program 

Cancel 

Fig. 3.1. Critical error message displayed by Windows 2000 

Operating systems of the Windows 9x family are considerably more informative 
in this respect (see Fig. 3.2). Besides the exception category, they display the contents 

of CPU registers, stack condition and memory bytes located by the address cs:EiP 

(e.g., by the current execution address). However, the existence of the Doctor Watson 

tool, which will be described later in this chapter, diminishes this difference between 
the two families of operating systems. Therefore, in this case we can only point out 

that Windows 9x is more user-friendly and ergonomic, since it immediately provides 
the required minimum of error information, while in Windows NT error reports are 

created by a separate utility. 
If no additional debugger has been installed in the system, then the critical error 

message window has only one button — OK. After the user clicks this button, the appli¬ 

cation that carried out the illegal operation will be terminated. If you wish, it is possible 
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to add the Cancel button to this window. Clicking on this button will start the debug¬ 
ger or any other utility intended for analyzing the situation. It is important to under¬ 

stand that clicking the Cancel button doesn’t cancel automatic termination of the in¬ 

correct application. However, having mastered some skills, you can close the "breach” 
manually and continue working in a normal way. 

Fig. 3.2. Critical error message displayed by Windows 98 

Start the Registry Editor application and go to the following registry key: 

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug. If there is no such 
key, just create it. The Debugger value specifies the path to the debugger with all of the 
required command-line options; Auto string parameter determines whether the de¬ 
bugger must start automatically (the value must be set to 1) or provide the user with 
a choice ("0”). Finally, the DWORD parameter UserDebuggerHotKey specifies the scan- 
code for the hotkey for starting the debugger. 

Doctor Watson 

The Doctor Watson tool is the standard built-in debugger for critical errors that is in¬ 
cluded with all operating systems of the Windows family. Principally, it is a static tool 
for collecting all relevant information. Although Doctor Watson provides a detailed 
report on the causes of a failure, it lacks the active functions that would allow it to in¬ 
fluence incorrectly operating programs. Thus, having only Doctor Watson at your dis¬ 
posal, you won’t be able to make the application that has caused an error continue 
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operating as if nothing has happened. To achieve this, you’ll have to use interactive 
debuggers. The Microsoft Visual Studio Debugger, supplied as part of the Microsoft 

Visual Studio, is one of such tools. It will be considered later in this chapter. 
That Doctor Watson is preferable for use on workstations, while interactive de¬ 

buggers are the best for servers is a widely held opinion. Those who hold this view 

generally think that end users cannot understand all of the mysteries of the assem¬ 

bler, while interactive debuggers are the tools of choice on servers. This opinion 

is partially true. However, it isn’t wise to ignore the point that not every cause of 

an error can be detected by static analysis tools. Furthermore, interactive tools sim¬ 

plify the procedure of analysis considerably. On the other hand, Doctor Watson is 

included with the operating system, while all other tools must be purchased sepa¬ 

rately. Therefore, it is up to you to choose the preferred debugger for handling criti¬ 

cal errors. 

To specify Doctor Watson as your default debugger, add the following entry to 

the system registry or issue the Drwtsn32.exe -i command (to carry out any of these 

operations, you must have administrative privileges): 

Listing 3.1. Installing Doctor Watson as the default debugger 

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug] 

"Auto"="l" 

”Debugger”=”drwtsn32 -p %ld -e %ld -g” 

”UserDebuggerHotKey”=dword:00000000 

Now the occurrence of any critical error will be followed by the generation of a re¬ 

port composed by Doctor Watson and containing a more or less detailed explanation 

on the error type and what has caused it. 

m 
Test.exe caused a General Protection Fault in 

module CW2RUN16.DLL at 0040:5511. 

Choose close. Test.exe will close. 

! Close 

Fig. 3.3. Reaction of Doctor Watson to a critical error 
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An example of a report created by Doctor Watson is provided below. Comments 
are added by the author; the report's lines are in bold. 

Listing 3.2. An example of report produced by Doctor Watson (with the author's 
comments in bold). 

Exception in application: 

App: (pi<^612) 

; pid of the process where the exception took place 

Time: 14.11.2003 @ 22:51:40.674 

; Time when the exception took place 

Number: C0000005 (access rights violation ) 

; Code of the Exception category 

; Code decoding can be found in WINNT.H 

; included with SDK, supplied with any Windows compiler 

; A detailed description of all exceptions can be found 

; in supplementary documentation 

; to all Intel and AMD processor, distributed freely 

; by the respective manufacturers 

; (Attention: To change the OS exception code to the CPU interrupt vector, 

; you must reset the most significant word to zero.) 

; In this case, this is 0x5 — an attempt to access 

; an invalid memory address. 

*-> System information <-* 

Computer name: KFNC 

User name: Kris Kaspersky 

Number of processors: 1 

Processor type: x86 Family 6 Model 8 Stepping 6 

Windows version: 2000: 5.0 

Current build: 2195 

Service pack: None 

Current type: Uniprocessor Free 

Registered organization: 

Registered user: Kris Kaspersky 

; Brief info on the system 

*-> Task list <-* 
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0 Idle.exe 

8 System, exe 

232 smss.exe 

1244 os2srv.exe 

1164 os2ss.exe 

1284 windbg.exe 

1180 MSDEV.exe 

1312 cmd.exe 

612 test.exe 

1404 drwtsn32.exe 

0 _Total.exe 

(00400000 - 00406000) 

(77F80000 - 77FFA000) 

(77E80000 - 77F37000) 

; List of loaded DLLs 

; According to documentation, the names of appropriate modules 

; must be listed to the right of the addresses. They are 

; masked so well, however, that they became practically invisible. 

; Still, it is possible to extract their names from the log file. 

; But this can't be done without the use of a few tricks (see character table below) . 

Memory copy for flow 0x188 

; Provided below is a copy of the memory flow that has caused an exception. 

eax=00000064 ebx=7ffdf000 ecx=00000000 edx=00000064 esi=00000000 edi=00000000 

eip=00401014 esp=0012ff70 ebp=0012ffc0 iopl=0 nv up ei pi nz na pe nc 

cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000202 

; Contents of registers and flags 

Function: <nosymbols> 

; Printout of the failure environment 

00400ffc 0000 add [eax],al ds:00000064=?? 

; Writing the value into the cell that adds AL value to EAX 

; The value of the cell address computed by Doctor Vfetson is equal to 64h, 

; which, obviously, doesn't correspond to reality; 

; Doctor Vfetson substitutes the value of the EAX register 

; for the moment of failure into the expression 

; and this value is different from the one 

; that this register had at the moment of execution! 

; Unfortunately, neither we nor Doctor Vfetson 
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; know the run-time value of the EAX register. 

00400ffe 0000 add [eax] , al ds: 00000064=?? 

; Writing the AL value of the cell referenced by EAX 

; What? again? what a pain?! Actually, 

; it is the sequence 00 00 00 00 that is encoded this way. 

; For all appearances, this sequence is a piece 

; of some machine command incorrectly interpreted 

; by the disassembling engine of Doctor Watson. 

00401000 8b542408 mov edx, [esp+0x8] ss:00f8d547=???????? 

; Loading function argument into EDX 

; It is impossible to tell for certain which argument we should load, 

; since we do not know the address 

; of the stack frame. 

00401004 33c9 xor ecx, ecx 

; Resetting ECX to zero 

00401006 85d2 test edx, edx 

00401008 7el8 jle 00409b22 

; If EDX == 0, jumping to the 409B22h address 

0040100a 8b442408 mov eax, [esp+0x8] ss:00f8d547=???????? 

; Loading the above-mentioned argument into EAX 

0040100e 56 push esi 

; Saving ESI in the stack, thus moving the stack top pointer 

; up by 4 bytes (into the area of lower addresses) 

0040100f 8b742408 mov esi, [esp+0x8] ss:00f8d547=???????? 

; Loading the next argument into ESI 

; Since ESP has just been changed, this isn't the argument 

; with which we were dealing before. 

00401013 57 push edi 

; Saving the EDI register in the stack 

FAILURE -> 00401014 0fbe3c31 movsx edi, byte ptr [ecx+esi] ds:00000000=?? 

; Well, we've got the instruction that has caused the access violation. 

; it accesses the cell referenced by the sum of the ECX and ESI registers. 

; What are their values? scroll the screen upwards slightly and find out that 

; ECX and ESI are equal to 0, a fact about which 
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; Doctor Watson informs us: ”ds:000000” 

; Note that this information can be trusted, since substitution 

; of the effective address was carried out at run time. 

; Now, let us recall that ESI contains 

; the copy of the argument passed to the function 

; and that ECX was explicitly reset to zero. Consequently, 

; in the [ECX+ESI] expression, 

; the ESI register is the pointer, and ECX is the index. 

; Since ESI is equal to zero, this means that our function 

; passed the pointer to unallocated memory area. 

; This usually happens 

; either because of an algorithmic error in a program 

; or because the virtual memory has been exhausted. 

; Unfortunately, Doctor Watson doesn't disassemble 

; the parent function, and we have to guess, which of the 

; two possible variants is true. 

; Although, it is possible to disassemble the memory dump 

; of the process (provided, of course, that it has been saved), 

; this isn't what we actually need... 

00401018 03c7 add eax, edi 

; Add the contents of the EAX register 

; to the EDI register and write the result to EAX. 

0040101a 41 inc ecx 

; increase ECX by one 

0040101b 3bca cmp ecx, edx 

0040101d 7cf5 jl 00407014 

; Until ECX < EDX, juup to 407014 

; (obviously, we are dealing with a loop controlled by the ECX counter). 

; In the case of interactive debugging, we could forcibly exit the function 

; that is returning the error flag, informing us so that the parent function 

; (and the entire program along with it) can continue execution. 

; In this case, only the last operation would be lost, 

; while all the other data will remain correct. 

0040101f 5f pop edi 

00401020 5e pop esi 

00401021 c3 ret 

; exiting the function 

*-> Backward tracing of the stack <-* 
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; Stack contents at the moment of failure 

; prints addresses and parameters of previously executed functions. 

; In the case of interactive debugging, we can simply pass control to one 

; of the upper functions, which is equivalent to a return to the past. 

; Only in reality is it inpossible to fix smashed porcelain, 

; in the computer universe, everything is possible! 

FramePtr RetumAd Param#l Param#2 Param#3 Par am# 4 Function Name 

; FramePtr: points to the value of the stack frame, 

; above (i.e., in smaller addresses) are the function arguments, 

; below are its local variables. 

; ReturnAd: stores the return address to the parent function. 

; If this location contains garbage and back-tracing of the stack 

; starts to make a characteristic noise, 

; then it is highly likely 

; that we are dealing with the stack overflow error 

; or, possibly, that your computer is under attack. 

; Param#: the first four parameters of the function — 

; this is the number of parameters 

; that Doctor Watson displays on the screen. 

; This is an overly stringent limitation, 

; since most functions have dozens of parameters 

; and the first four do not provide sufficient information. 

; However, a missing parameter can be retrieved easily 

; from the copy of the unprocessed stack manually. 

; To do so, it is enough to go by the address specified in the 

; FramePtr field 

; Func Name: function name (if it is possible to detect it) . In fact, 

; it displays only the names of functions imported from other DLLs, 

; since it is impossible to find a commercial program 

; compiled along with debug info. 

0012FFC0 77E87903 00000000 00000000 7FFDF000 C0000005 !<nosymbols> 

0012FFFO 00000000 00401040 00000000 OOOOOOC8 00000100 kemel32! SetUnhandledExcseptianFilter 

; Functions are listed in the order of their execution. 

; The last one that was executed was the same 

; kernel32!SetUnhandledExceptionFilter function that handles the current exception. 

*-> Copy of unprocessed stack <-* 

; The copy of the unprocessed stack contains it ”as is.” 

; It is very helpful when detecting buffer overfull attacks — the entire shell-code 
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; passed by the intruder will be printed out by Doctor Watson, 

; and you'll only have to detect it (for further details, 

; see my book "Technique and philosophy of network attacks") 

0012ff70 00 00 00 00 00 00 00 00 - 39 10 40 00 00 00 00 00 . 

0012ff80 64 00 00 00 £4 10 40 00 - 01 00 00 00 dO Oe 30 00 d 

00130090 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00 . 

001300a0 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00 . 

*-> Symbol table <-* 

; The symbol table contains the names of all loaded DLLs, along with the names 

; of imported functions. Using these addresses as the starting point, 

; we can easily restore the «list of loaded DIis.»... 

ntdll.dll 

77F81106 00000000 ZwAGoessGheckByType 

77FCEEB0 00000000 fltused 

kemel32.dll 

77E81765 0000003d IsDebuggerPresent 

77EDBF7A 00000000 VerSetConditionMask 

; Thus, let us return to the list of loaded DLLs. 

; (00400000 — 00406000) — obviously, 

; this is the memory area occupied by the program itself. 

; (77F80000 - 77FFA000) - this is KERNEL32.DLL 

; (77E80000 - 77F37000) - this is NTDDL.DLL 

..9.@. 

@.0. 

Microsoft Visual Studio Debugger 
When you install the Microsoft Visual Studio programming environment, it registers 
its debugger as the default one for handling critical errors. Although this debugger is 
very easy to use, it has very limited functions, and doesn’t even support such a simple 
operation as looking for a hex sequence in memory. Its only advantage in comparison 
to the most advanced (in every respect) option, Microsoft Kernel Debugger, is the 
ability to trace processes that have generated a critical exception. 

In the hands of an experienced professional, Microsoft Visual Studio Debugger 
is capable of bringing wonders to reality, and one such wonder is making applications 
that have executed an illegal operation continue their work, even given that the oper- 
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ating system closes such applications abnormally without saving their data. Anyway, 
an interactive debugger (Microsoft Visual Studio Debugger is the one) provides much 

more detailed information on the failure and simplifies considerably the process 
of detecting its sources. Unfortunately, the limited space allowed in this chapter (even 
though it already contains a large amount of off topic information!) prevents the 
author from providing a detailed description of the entire methodic of debugging. 
Instead, I must limit myself to only a narrow range of the most interesting problems. 

For more details, see the section "Inhabitants of the Shadowy Zone, or From Morgue 

to Reanimation"). 
In order to set Microsoft Visual Studio Debugger as the default debugger for critical 

errors manually, add the following entries to the system registry: 

Listing 3.3. Specifying Microsoft Visual Studio Debugger as your default 
debugger for critical errors 

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug] 

”Auto”=”1” 

”Debugger”=”\”C:\\Prg Files\\MS VS\\Coramon\\MSDev98\\Bin\\msdev.exe\” -p %ld -e %ld” 

”UserDebuggerHotKey”=dword:00000000 

Listing 3.4. A demo example that causes a critical exception 

// The function returns the sum of n char characters. 

// If it is passed the null-pointer, the function will ’’drop,” 

// although itself isn't the source of error, rather, 

// the arguments passed to it, 

// by the parent function, 

test(char *buf, int n) 

{ 

int a, sum; 

for (a =0; a < n; a++) sum += buf[a]; // Here, the exception is thrown, 

return sum; 

} 

main() 

{ 

#define N 100 

char *buf =0; // Initializing the pointer to the buffer 

/* buf = malloc(100); */ // ’’Forgetting” to allocate the memory, 
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// which is the error 

test(buf, N); // Passing the null-pointer to some function 

} 

Inhabitants of the Shadowy Zone, 
or From Morgue to Reanimation 

Would you like to know how to make an application continue normal operation after 
a critical error message has appeared? In fact, this is an important, and sometimes ur¬ 
gent task. Suppose that an application containing unique data that have not been saved 
yet has crashed. In the best case, you’ll have to enter this information once again, while 
in the worst case, you have lost the data for good. There are some utilities on the mar¬ 
ket aimed exactly at solving this problem (Norton Utilities is a typical example). Un¬ 
fortunately, however, their abilities are far from comprehensive, and, on average, they 
turn out to be effective in only one in ten occasions. At the same time, manual "reani¬ 
mation” of a faulty program is successful in 75 to 90 per cent of all cases. 

Strictly speaking, it is impossible to recover fully the functionality of a crashed 
program or to roll back all of the actions that preceded the crash. In the best case, 
you’ll be able to save the data before the program totally loses control and starts to be¬ 
have unpredictably. Even this achievement would have to be counted as a success! 

There are at least three different methods of reanimation: a) forcibly exiting the 

function that has caused a critical exception; b) "unwinding" the stack and passing control 
back; c) passing control to the message handler function. Let us consider each of these 
methods in the example of the testt.exe application, a copy of which can be found on 
the companion CD. 

lumping ahead a few steps, note that only faults that are caused by algorithmic er¬ 
rors can be reanimated. Errors caused by hardware faults are irrecoverable. If infor¬ 
mation stored in RAM was corrupted because of a physical defect in the memory, you 
probably won’t be able to recover the crashed application. If, however, the failure did 
not affect vitally important data structures, there is some hope for successful recovery 
even in this case. 

Forcibly Exiting the Function 

Start the test program, enter some text in one or more of the windows, then select the 

About TestCEdit command from the Help menu. When the dialog opens, click the 

Make error button. Oops! The program displays a critical error message. If we click OK, 
all unsaved data will be lost, which isn’t what we planned. However, if a previously 
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installed debugger is present in the system, we can still make some attempts at saving 
the data. For the purposes of being specific, let’s suppose that we have Microsoft Vis¬ 
ual Studio Debugger. 

Click Cancel, and the debugger will immediately disassemble the function that 

caused the exception (see the listing provided below). 

Listing 3.5. Microsoft Visual Studio Debugger has disassembled the function 
that has thrown an exception 

0040135C push esi 

0040135D mov esi, dword ptr [esp+8] 

00401361 push edi 

00401362 movsx edi, byte ptr [ecx+esi] 1 

00401366 add eax, edi 

00401368 inc ecx 

00401369 cmp ecx, edx 

004013 6B jl 00401362 

004013 6D pop edi 

004013 6E pop esi 

004013 6F ret 8 

Having analyzed the cause of the exception (the function has been passed the 
pointer to unallocated memory), we draw the conclusion that it is impossible to make 
the function continue execution, since we do not know the structure of the data passed 
to it. In such a case, we have to return forcibly to the parent function, without forget¬ 
ting to set the error flag, which sends a signal to the program that the current opera¬ 

tion has not been accomplished. Unfortunately, there are no commonly adopted error 
flags. Therefore, different functions use different agreements. To discover the situation 
in each specific case, we must disassemble the parent function and determine which 
error code it expects. 

Place the cursor on the dump window and enter the name of the pointer to the 
stack top, esp register, into the address line. Then press <Enter>. The stack contents 

will be immediately displayed: 

Listing 3.6. Searching for the return address from the current function (in bold) 

0012F488 

0012F494 

0012F4A0 

0012F4AC 

0012FA64 

00000000 

FFFFFFFF 

00000019 

0012FA64 

00000064 

0012F4C4 

00000000 

004012FF 

00403458 

6C291CEA 

6C32FAF0 
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0012F4B8 

0012F4C4 

0012F4D0 

0012F4C0 

006403C2 

00640301 

0012FA64 

002F5788 

77E16383 

01100059 

00000000 

004C1E20 

The first two double words correspond to the pop edi/pop esi machine com¬ 
mands. Therefore, they are of little or no importance to us. As for the next double 
word, it contains the return address to the parent procedure (in the above-provided 
example, it is in bold). This is exactly what we need! 

Press <Ctrl>+<D>, then click 0x40l2FF, and debugger will display the following 

disassembled text: 

Listing 3.7. Disassembled listing of the parent function 

004012 FA call 00401350 

004012FF cmp eax,OFFh 

00401302 je 0040132D 

00401304 push eax 

00401305 lea eax, [esp+8] 

00401309 push 405054h 

0040130E push eax 

0040130F call dword ptr ds:[4033B4h] 

00401315 add esp, OCh 

00401318 lea ecx, [esp+4] 

0040131C push 0 

004013IE push 0 

00401320 push ecx 

00401321 mov ecx, esi 

00401323 call 00401BC4 

00401328 pop esi 

00401329 add esp, 64h 

0040132C ret 

0040132C 

0040132D push 0 

0040132D ; This branch will get control if 401350h function returns FFh. 

0040132F push 0 

00401331 push 405048h 

00401336 mov ecx, esi 

00401338 call 00401BC4 

0040133D pop esi 

0040133E add esp, 64h 

00401341 ret 
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Look at this: If the eax register is equal to FFh, then the parent function passes 

the control to branch 40l32Dh and terminates execution after several machine com¬ 

mands, passing control to a higher-level function. If, however, eax != FFh, its value 

is passed to function 4033B4h. Consequently, we can assume that FFh is the error flag. 

Let us return to the function being tested by pressing <Ctrl>+<G> and clicking eip. 

Then switch to the Registers pane and change the value of eax to FFh. 

Now, it is necessary to find a suitable point of return from the function. It is not 

possible to simply go to the ret machine command, because before returning from the 

function, it is necessary to balance the stack. Otherwise, the program will crash irre¬ 

versibly, throwing us off to some unpredictable location. 

In a general case, the number push commands must correspond exactly to the 

number of pop commands. Also, take into account the fact that push dword x is 

equivalent to sub esp, 4, and pop dword x — to add esp, 4. After analyzing the dis¬ 

assembled listing of the function, it is possible to draw the conclusion that, to balance 

the good and the bad in this case, we must pop two double words from the stack top. 

They correspond to the following machine commands: 40135C:PUSH esi and 

401361: push edi. This can be achieved bypassing the control to the 40l36Dh address, 

where there are two benevolent pops that bring the stack to a balanced state. Move the 

cursor to that position, right-click, and choose the Set Next Statement command from 

the context menu. As a variant, it is possible to switch to the registers window and 

change the eip value from 40l362h to 40l36Dh. 

Press <F5> to make the processor continue with program execution. Voila! 

The faulty program actually continues execution, and you can save your data. 

(A good-natured complaint about an error in the last operation can be ignored.) 

Unwinding the Stack 

It is not possible to forcibly exit from the function in every case. Some critical failures 

influence several nested functions simultaneously. In this case, in order to reanimate 

the "dead" program, we have to carry out a deep rollback, continuing program execu¬ 

tion from the point, at which nothing threatened its operability. The exact depth of 

rollback must be selected experimentally. As a rule, it will be from three to five steps. 

Bear in mind that if nested functions modify global data (for instance, heap data), then 

any attempt at carrying out a rollback can result in a total crash of the program being 

debugged. Therefore, it is desirable to guess the rollback depth on the first attempt. 

If you are in doubt, just remember that an excess is better than a shortage. On the 

other hand, excessive rollback results in the loss of all unsaved data... 

The rollback procedure comprises the following three steps: a) building the tree of 
calls; b) determining the coordinates of the stack frame for each call; c) restoring the register 
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context of the parent function. A really good debugger will carry out all of these opera¬ 
tions for you. The only thing that remains is to write appropriate values into eip and 
esp. Unfortunately, Microsoft Visual Studio Debugger cannot be qualified as 
a really effective debugger. It is good for tracing the stack, omitting fpo functions 

(Frame Point Omission — functions with optimized frame), but doesn’t report coordi¬ 
nates of the stack frame; therefore, the most difficult part of your job must be carried 
out manually. 

Still, even such a stack of calls is still better than nothing. By unwinding the stack 
manually, we will rely on the fact that frame coordinates are determined naturally by 

the return address. Let’s suppose that that the contents of the Call Stack window ap¬ 
pear as follows: 

Listing 3.8. The contents of the Call Stacks window displayed by Microsoft 
Visual Studio Debugger 

TESTCEDIT! 00401362 0 

MFC42! 6c2922ae () 

MFC42! 6c298fc5 () 

MFC42! 6c292976 () 

MFC42! 6c291dcc() 

MFC42! 6c291cea() 

MFC42! 6c291c73 () 

MFC42! 6c291bfb() 

MFC42! 6c291bba() 

Let’s try to find addresses 6C2922AEh and 6C298FC5h, corresponding to the two last 
steps of execution in the stack contents. Press <ALT>+<6> to switch to the dump 

window, then use the <Ctrl>+<G> hotkey combination to select the base address and 
select esp. Scroll the dump window down, and you’ll find both return addresses 
(in the listing provided below, they are framed): 

Listing 3.9. Stack content after unwinding 

0012F488 0012EA64 0012EA64 004012EF 0040136F: ret 8 the first return address 

0012F494 00000000 00000064 00403458 00401328:pop esi 

0012F4A0 FFFFFFFF 0012F4C4 6C291CEA. 

0012F4AC 00000019 00000000 6C32EAF0 

0012F4B8 0012F4C0 0012EA64 01100059 

0012F4C4 00320774 002F5788 00000000 

0012F4D0 00320701 77E16383 004C1E20 

0012F4DC 00320774 002F5788 00000000 
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0012F4E8 000003E8 0012EA64 004F8CD8 

0012F4F4 0012F4DC 002F5788 0012F560 

0012F500 77E61D49 6C2923D8 00403458 <r 0040132C:ret; 

0012F50C 00000111 0012F540 |6C2922AE] <-6C29237E:pop ebx/pop ebp/ret lCh 

0012F518 0012EA64 000003E8 00000000 

0012F518 0012EA64 000003E8 00000000 

0012F524 004012P0 00000000 oooooooc 

0012F530 00000000 00000000 0012EA64 

0012F53C 000003E8 0012F564 |6C298FC5| 

0012F548 000003E8 00000000 00000000 

0012F554 00000000 000003E8 0012EA64 

Memory cells below the return addresses represent the register values that are 
saved when entering the function and restored after exiting it. Memory cells located 
below return addresses are occupied by function arguments (if the function has any), 
or belong to the local variables of the parent function (if the nested function doesn’t 
accept any arguments). 

Returning to Listing 3.5, note that the two double words on the top of the stack cor¬ 
respond to the pop edi and pop esi machine commands, while the address that directly 
follows them — 4 0l2FFh — is the one, to which the 4 0l36Fh:RET 8 command passes 
control. To continue stack unwinding, we must disassemble the code by this address: 

Listing 3.10. Disassembled listing of the "grandmother" function 

004012 FA call 00401350 

004012FF cmp eax,0FFh 1 

00401302 je 0040132D 

00401304 push eax 

00401305 lea eax,[esp+8] 

00401309 push 405054h 

0040130E push eax 

0040130F call dword ptr ds:[4033B4h] 

00401315 add esp, OCh 

00401318 lea ecx,[esp+4] 

0040131C push 0 

004013IE push 0 

00401320 push ecx 

00401321 mov ecx, esi 

00401323 call 00401BC4 

00401328 pop esi 

00401329 add esp, 64h 

0040132C ret ; SS:[ESP] = 6C2923D8 
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By scrolling the window downwards, we will notice the add esp, 64 instruction 
that closes the current stack frame. Eight bytes more are popped by the 40136Fh:RET 8 

instruction, and four bytes are taken by 401328: pop esi. Thus, the position of return 

address in the stack is equal to current_ESP + 64h + 8 + 4 == 7Oh. Going down 7Oh 

bytes, you’ll see: 

Listing 3.11. Return address from the "grandmother" function 

0012F500 77E61D49 6C2923D8 00403458 <r 00401328:POP ESI/ret; 

The first double word is the value of the esi register, which we will have to restore 

manually; the second is the return address from the function. Press <Ctrl>+<G>, en¬ 
ter 0x6C2923D8, and continue to unwind the stack: 

Listing 3.12. Disassembled listing of the great-grandmother function 

6C2923D8 jmp 6C29237B 

6C29237B mov eax, ebx 

6C29237D pop esi 

6C29237E pop ebx 

6C29237F pop ebp 

6C292380 ret lCh 

Now, we have finally got to restoring registers! Move to the right by one double word 

(it was just popped from the stack by the ret command), switch to the Registers window, 

and restore the esi, ebx, and ebp registers by retrieving their saved values from the stack: 

Listing 3.13. The contents of the registers saved in the stack along with 
the return address 

0012F500 77E61D49 6C2923D8 00403458 <r 6C29237D:pop esi 

0012F50C 00000111 0012F540 |6C2 922AE| ^6C29237E:pop ebx/pop ebp/ret lCh 

As an alternative, you can move the eip register to the 6C29237Dh address, the esp 

register — to the l2F508h address, and then press <F5> to continue program execu¬ 
tion. This technique actually works. At the same time, the reanimated program doesn’t 
report an execution error from the last operation (as was the case when restoring by 
means of forcibly exiting the function). Instead of this, the program doesn’t execute 

that command. Very well! 
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Passing Control to the Message Handler Function 

Neither of the above-described methods of reanimating faulty applications are free 

from limitations and drawbacks. If the stack is seriously damaged by buffer overflow 
attacks or by algorithmic errors, the contents of vitally important processor registers 
will be corrupted. In this case, we won’t be able to roll back (because stack contents 
have been lost) or exit the current function (because eip points to some unknown lo¬ 
cation, probably somewhere in outer space). For console applications, there is actually 
very little that can be done in such situations... GUI applications, however, are a dif¬ 
ferent matter. The concept of event-driven architecture provides any windowing ap¬ 
plication with some server functions. Even if the current execution context is irreversi¬ 
bly lost, we can pass control to the message-handling loop, thus making the program 
continue processing user commands. 

A classic message-handling loop appears as follows: 

Listing 3.14. A classic message-handling loop 

while (GetMessage(&msg, NULL, 0, 0)) 

TranslateMessage(&msg); 

DispatchMessage(&msg); 

} 

All you need to do is pass control to the while loop, without even caring about the 

stack frame tuning, since optimized programs (which are overwhelming in the major¬ 
ity) address their local variables via esp, rather than via ebp. Of course, when address¬ 

ing to the msg variable, the function will ruin the stack contents that are located below 
its top. However, this is of little or no importance to us. 

You should, however, realize that after you exit the application, it will definitely 
die (because instead of the address to return from the function, the ret machine 

command will find some unpredictable trash on top of the stack). However, this will 

be after you have saved all of your data, and, therefore, this crash doesn’t present any 
threat. The only exception is in a group of freaky applications that ’’forget” to close all 

opened files and delegate this job to the ExitProcess function. However, even in this 
case, there is a way out: You can modify the return address in such a way as to make it 

point to the ExitProcess function! 
Let us create the simplest Windows application and experiment with it. Start Visual 

Studio, choose New —> Project —> Win32 Application and then select Typical Hello, 

World application. Add a new item to the menu, and add the following: char *p; *p = 0; 

then compile this project with debug info. 
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Drop the application, then start the debugger. Move the cursor to the first line of the 

message-handling loop, right-click and select Set Next Statement from the context menu. 
Press <F5> to continue program execution and... it will actually continue to work! 

Now, compile the project as a release (i.e., without debug info) and try to reanimate 
the application in naked machine code. Taking advantage of the fact that Windows is 
a truly multitasking environment, in which the crashing of one process doesn’t interfere 
with the operation of others, start your favorite disassembler (IDA PRO, for instance) 

and analyze the import table of the program being debugged. Even freeware programs 
such as dumpbin are able to do this. However, the report produced by dumpbin is not as 
clear and illustrative as the results produced by fully functional disassemblers. 

The main goal of our search will be the TranslateMessage/DispatchMessage func¬ 
tions and cross-references to the message-handling loop. 

Listing 3.15. Searching TranslateMessage/DispatchMessage functions in the im¬ 
port table 

.idata:004040E0 

.idata:004040E0 

.idata:004040E0 

.idata:004040E4 

.idata:004040E4 

.idata:004040E8 

1 BOOL _stdcall TranslateMessage(const MSG *lpMsg) 

extm TranslateMessage:dword ; DATA XREF: _WinMain@16+711 r 

; _WinMain@16+8Dtr 

1 LONG _stdcall DispatchMessageA(const MSG *lpMsg) 

extm DispatchMessageA:dword ; DATA XREF: _WinMain@16+94tr 

The DispatchMessage function has the only related cross-reference that obviously 
leads to the message-handling loop we are after. The disassembled listing of this loop 
appears as follows: 

Listing 3.16. The disassembled listing of the message-handling function 

.text:00401050 

.text:00401050 

.text:00401050 

.text:00401056 

.text:00401058 

.text:0040105A 

.text:0040105A 

.text:0040105A 

.text:0040105A 

.text:0040105A 

mov edi, ds:GetMessageA 

The first call to GetMessageA 

(this isn't the loop itself yet, it is only its threshold). 

push 0 ; wMsgFilterMax 

push 0 ; wMsgFilterMin 

lea ecx, [esp+2Ch+Msg] 

ECX points to the memory area, through which GetMessageA 

will return the message. The current ESP value can be any value. 

The most important thing here is that it must 

point to the actually allocated memory area. 

(See memory map, if the ESP value turns out 
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.text:0040105A ; to be corrupted so that it points nowhere.) 

.text:0040105A ; 

text:0040105E push 0 ; hWnd 

text:00401060 push ecx ; lpMsg 

text:00401061 mov esi, eax 

text:00401063 call edi ; GetMessageA 

text:00401063 ; Calling GetMessageA 

text:00401063 

text:00401065 test eax, eax 

text:00401067 jz short loc 4010AD 

text:00401067 ; Checking if there are unprocessed messages in the queue 

text:00401067 

text:00401077 loc_401077: ; CODE XREF: _WinMain@16+A9 j j 

text:00401077 ; Starting point of the message loop 

text:00401077 

text:00401077 mov eax, [esp+2Ch+Msg.hwnd] 

text:0040107B lea edx, [esp+2Ch+Msg] 

text:0040107B ; EDX points to the memory area used for passing the messages 

text:0040107B 

text:0040107F push edx ; lpMsg 

text:00401080 push esi ; hAccTable 

text:00401081 push eax ; hWnd 

text:00401082 call ebx ; TranslateAcceleratorA 

text:00401082 ; Calling the TranslateAcceleratorA function 

text:00401082 

text:00401084 test eax, eax 

text:00401086 jnz short loc 40109A 

text:00401086 ; Checking if there are unprocessed messages in the queue 

text:00401086 

text:00401088 lea ecx, [esp+2Ch+Msg] 

text:0040108C push ecx ; lpMsg 

text:0040108D call ebp ; TranslateMessage 

.text:0040108D ; Calling the TranslateMessage function, if there is anything to translate 

.text:0040108D 

.text:0040108F lea edx, [esp+2Ch+Msg] 

.text:00401093 push edx ; lpMsg 

.text:00401094 call ds:DispatchMes sageA 

.text:00401094 ; Dispatching the message 

.text:0040109A 

.text:0040109A loc_40109A: ; CODE XREF: _WinMain@16+86 f j 

. text :0040109A push 0 ; wMsgFilterMax 
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.text:0040109C 

.text:0040109E 

.text:004010A2 

.text:004010A4 

.text:004010A5 

.text:004010A5 

.text:004010A5 

.text:004010A7 

.text:004010A9 

.text:004010A9 

.text:004010A9 

.text:004010AB 

.text:004010AC 

.text:004010AD 

.text:004010AD 

.text:004010AD 

.text:004010B3 

.text:004010B6 

.text:004010B6 

push 0 ; wMsgFilterMin 

lea eax, [esp+34h+Msg] 

push 0 ; hWnd 

push eax ; lpMsg 

call edi ; GetMessageA 

; reading the next message from the message queue 

test eax, eax 

jnz short loc 401077 

; running the message handling loop 

pop ebp 

pop ebx 

loc_4010AD: ; CODE XREF: _WinMain@16+67 

mov eax, [esp+24h+Msg.wParam] 

.text: :004010B1 pop edi 

.text: :004010B2 pop esi 

add esp, lCh 

retn lOh 

_WinMain@16 endp 

We can see that the message-handling loop starts from the address 40l050h. This is 
the address, to which it is necessary to pass control in order to continue the execution 

of the crashed program. Try it. The program works! 
Naturally, the task of reanimating a real-world application is much more compli¬ 

cated, because the message-handling loop in this case will be distributed over a large 
number of functions. Note that it is very difficult to identify all of these functions in 
the course of "superficial" disassembling. Nevertheless, applications based on standard 
libraries (such as MFC or OVL) have a predictable architecture. Therefore, the reani¬ 
mation of such applications isn’t a hopeless task. 

Let’s consider the structure of the message-handling loop in MFC. MFC applications 
spend most of their time in the following function: cwinThread:: Run (void). This func¬ 
tion periodically polls the queue for the arrival of new messages and sends them to the 
appropriate handlers. If one of the handlers has caused a critical fault, program execution 
can be continued using the Run function. This is its main advantage! 

The function has no explicit arguments, but accepts a hidden this argument, 
pointing to the cwinThread class instance or its derived class, without which the func¬ 
tion will be unable to work. Fortunately, tables of virtual methods of the cwinThread 

class contain a sufficient amount of "birthmarks," allowing us to recreate the this 

pointer manually. 
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Let’s load the Run function into the disassembler and mark all of the calls to the ta¬ 
ble of virtual methods addressed via the ecx register. 

Listing 3.17. A fragment of the disassembled listing of the Run function 

.text:6C29919D n2k Trasnlate main: ; CODE XREF: MFC42_5715+lFt j 

. text:6C29919D MPC42_5715+67j,j ... 

. text:6C29919D mov eax, [esi] 

. text:6C29919F mov ecx, esi 

. text:6C2991A1 call dword ptr [eax+64h] CWinThread: : PumpMessage (void) 

. text:6C2991A4 test eax, eax 

. text:6C2991A6 jz short loc 6C2991DA 

. text:6C2991A8 mov eax, [esi] 

. text: 6C2991AA lea ebp, [esi+34h] 

. text:6C2991AD push ebp 

. text:6C2991AE mov ecx, esi 

. text:6C2991B0 call dword ptr [eax+6Ch] CWinThread: : IsidleMessage (MSG*) 

. text:6C2991B3 test eax, eax 

. text:6C2991B5 jz short loc 6C2991BE 

. text:6C2991B7 push 1 

.text:6C299lB9 mov [esp+14h], ebx 

. text:6C2991BD pop edi 

. text:6C2991BE 

.text:6C299lBE loc _6C2991BE: CODE XREF: MFC42_5715+51t j 

. text:6C2991BE push ebx wRemoveMsg 

. text:6C2991BF push ebx WyfegFilterMax 

. text:6C2991C0 push ebx WyisgFilterMin 

.text:6C299lCl push ebx hWnd 

. text:6C2991C2 push ebp lpMsg 

. text:6C2991C3 call ds:PeekMessageA 

.text:6C299lC9 test eax, eax 

. text:6C2991CB jnz short n2k Trasnlate main 

.text:6C2991CD 

Thus, the Run function expects to receive the pointer to the double word pointing 
to the table of virtual methods, elements 0x19 and OxlB of which represent the 

PumpMessage and isidleMessage functions (or stubs to them), respectively. If DLL was 
not relocated, the addresses of imported functions can be found using the same disas¬ 
sembler. Otherwise, they should be reconstructed using the base address of the mod¬ 

ule, which is displayed by the debugger in response to the Modules command. Pro¬ 

vided that these two functions were not blocked by the programmer, searching for the 

needed virtual table should be a trivial task. 
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For some unknown reason, the MFC42.DLL library doesn’t export symbolic 
names for these functions, so we must get this information on our own. After proc¬ 
essing the MFC42.LIB library using the dumpbin utility with the /arch command-line 
option, we will get the ordinals of both functions (for PumpMessage, this is 5307, and 

for isidleMessage — 4079). Now, it remains to find these values in the export list of 
MFC42.DLL (dumpbin /EXPORTS mfc42.dll > mfc42. txt), from which we will dis¬ 
cover that the address of the PumpMessage function is 6C291194h, while the address of 
the IsidleMessage is 6C292583h. 

Now, it is necessary to find the pointers to the PumpMessage/isidleMessage func¬ 
tions in memory, or, to be more precise, in the data section, the base address of which 
is contained in the header of the PE-file. Bear in mind that in x86 processors, the least 
significant byte is located at the lower address, which means that all numbers are writ¬ 
ten in inverse order. Unfortunately, Microsoft Visual Studio Debugger doesn’t support 
the memory-searching operation. Therefore, we must bypass this limitation by copy¬ 
ing the content of the dump onto the clipboard, pasting it into a text file, and search¬ 
ing for addresses there by pressing <F7>. Finally, the required pointers are found at 

the addresses 403044h/40304Ch (naturally, in your system these addresses may be dif¬ 
ferent). Note that the distance between the pointers is exactly equal to the distance 

between the pointers to [eax + 64h] and [eax + 6ch], while the order, in which they 
appear in memory, is inverse to the order, in which virtual methods are declared. This 
is a good symptom, which indicates that we are likely on the right path. 

Listing 3.18. The addresses of the IsIdleMessage/PumpMessage functions 
located in the data section 

00403044 6C2911D4 6C292583 6C291194 ; IsIdleMessage/PumpMessage 

00403050 6C2913D0 6C299144 6C297129 

0040305C 6C297129 6C297129 6C291A47 

The pointers referring to the 403048h/40304Ch addresses, obviously, are the candi¬ 
dates for membership in the virtual methods table of the cwinThread class, for which 
we are looking. By extending the search range to the entire address space of the proc¬ 

ess being debugged, we will find the following two stubs: 

Listing 3.19. Stubs to the IsIdleMessage/PumpMessage functions located 
in the data segment 

00401A20 jmp dword ptr ds:[403044h] ; IsidleMessage 

00401A26 jmp dword ptr ds:[403048h] ; 

00401A2C jmp dword ptr ds:[40304Ch] ; PumpMessage 
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We are getting closer! We have found the stubs to the virtual functions instead of 
the functions themselves. By unrolling this complicated puzzle, let us try to find the 
references to 40lA26h/40lA2ch, which pass control to the code provided above: 

Listing 3.20. Virtual table of the CWinThread class 

|00403490| 00401A9E 00401040 004015F0 0x0, 0x1, 0x2 elements 

0040349C 00401390 004015F0 00401A98 0x3, 0x4, 0x5 elements 

004034A8 00401A92 00401A8C 00401A86 0x6, 0x7, 0x8 elements 

004034B4 00401A80 00401A7A 00401A74 0x9, OxA, OxB elements 

004034C0 00401010 00401A6E 00401A68 OxC, OxD, OxE elements 

004034CC 00401A62 00401A5C 00401A56 OxF, 0x10, 0x11 elements 

004034D8 00401A50 00401A4A 00401A44 0x12, 0x13, 0x14 elements 

004034E4 00401A3E 004010B0 00401A38 0x15, 0x16, 0x17 elements 

004034F0 00401A32 00401A2C 00401A26 0x18, 0x19, OxlA elements (PumpMessage) 

004034FC 00401A20 00401A1A 00401A14 OxlB, OxlC, OxlD elements (IsIdleMessage) 

Even a beginner will easily recognize the virtual functions table in this data struc¬ 

ture. The pointers to stubs to PumpMessage/lsldleMessage are divided by exactly one 
element, as required by the task conditions. Let us suppose that this virtual table is the 

one that we need. To check if this assumption is correct, count 0x19 elements upwards 
from 4034F4h, and try to find the pointer that refers to its starting point. If you are 
lucky and it turns out to be of the CWinThread class, the program will be able to con¬ 
tinue its operation correctly: 

Listing 3.21. The instance of CWinThread, manually located in memory 

|004050B8| 00403490 00000001 00000000 

004050C4 00000000 00000000 00000001 

Actually, something very similar to the truth can be found in the memory. Let us 

write the 4050B8h value into the ecx register and locate the Run function in the memory 

(as already mentioned, its address — 6c299164h — is known, provided that it hasn’t 

been blocked). Then press <Ctrl>+<G>, enter "0x6c299164", and choose the Set Next 

Statement command from the right-click menu. The program, having escaped with 

a slight fright, continues execution, while you have a good reason to be happy and go 

have a rest. 

Hanged applications that react neither to keyboard entry nor to mouse clicks can 

be reanimated in a similar way. 
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How to Process Memory Dump 

...In the software department, the entire floor was 

sown with the confetti from punch cards, and there were 

some guys crawling over the printout of a crash dump 

about 20 meters in length, trying to locate an error in the 

memory manager. The head of the department approached 

the president and informed him that there was some hope 

that the task could be achieved before dinner. 

J. Antonov. "The Youth of Gates" 

Memory dump, also known as core, crash-dump, which is saved by the system in the 
event of a critical error, isn’t the most useful tool for detecting the cause of the crash. 
However, there is often nothing else at the disposal of system administrator. What is 
the crash dump? This is the last moan of the operating system at the moment of irre¬ 
versible fault, before it dies altogether. Digging it out is unlikely to please you. On the 
contrary, it is highly probable that you won’t be able to detect the actual cause of the 
failure. Suppose, for instance, an incorrectly written driver has invaded the memory 
region belonging to another driver and ruined its data structures, sending all of the 
numbers there topsy-turvy. At the moment when the ’’victim” dies, the faulty driver 
may already be stopped and, in this case, it will be practically impossible using the 
memory dump alone to determine that it was the one that actually crashed the system. 

Nevertheless, it doesn’t make any sense to ignore the dump’s existence. After all, 
it provided the only debugging method before the arrival of interactive debuggers. 
Contemporary programmers are spoiled by the availability of visual analysis tools. 
However, it doesn’t provide them with much self-confidence in situations where 
pitiless entropy leaves them alone, face to face with their errors. But enough waxing 
lyrical. Let’s take a closer look at this question. 

First and foremost, it is necessary to edit the system configuration (Control Panel —> 

System) and make sure that dump settings correspond to our requirements 

(Advanced —» Startup and Recovery). Windows 2000 supports three types of memory 

dumps: small memory dump, kernel memory dump, and complete memory dump. 
To change the dump settings, you must have administrative privileges. 

Small memory dump uses only 64 K (instead of 2 MB, as the context menu states) 
and includes: a) a copy of BSOD; b) a list of loaded drivers; c) the context of the 
crashed process with all of its threads; d) the first 16 K of the kernel stack of the 
crashed process. It’s a disappointingly small amount of information, isn’t it? Direct 
dump analysis provides us only with the address, at which the error has occurred and 
the name of the driver, to which that address belongs. Provided that system configura¬ 
tion didn’t change after the moment of failure, we can start the debugger and disas¬ 
semble the suspected driver. However, this is unlikely to produce a valuable result. 
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After all, the content of the data segment at the moment of failure is unknown to us. 
Furthermore, we cannot even say for sure that we see the same machine commands as 
those that caused the failure. Therefore, the small memory dump might be useful only 
for system administrators, for whom it is sufficient to know the name of the unstable 
driver. As practice has shown, this information is sufficient in the vast majority of 
cases. The administrator is expected to send complaints along with an error report and 
memory dump to driver developers, and replace the driver with a newer, more stable 
and reliable one. By default, small memory dump will be written to the directory called 
%SystemRoo1%\Minidump, where it is assigned the name starting with the string 
"Mini", followed by the current date and number of the failure for the current day. 
For example:"Minil 10701-69. dmp" — 69th system dump saved on November 7,2001. 

Kernel memory dump contains significantly more comprehensive information 

about the failure. It includes the entire memory allocated to the system kernel and its 
components — drivers, Hardware Abstraction Layer (HAL), and so on, as well as 
a copy of BSOD. The size of the kernel dump depends on the number of installed 
drivers and varies from system to system. Help system states that this value can vary 
from 50 to 800 MB. Eight hundred MB is too much to look realistic. A size of ap¬ 
proximately 50 to 100 MB seems more likely. The technical documentation states that 
the approximate size of the kernel dump is about one third of the amount of RAM 

physically installed in the computer. This is the best compromise between disk space 
overhead, the speed of dump creation, and the information value of the latter. This 
option does actually provide you with the required minimum of information. Using 
this option, it is possible to locate practically all typical errors of the drivers and other 

kernel components, including those that are due to the hardware malfunction (how¬ 
ever, the investigator must have some experience with studying memory crash 

dumps). By default, the kernel dump is written into the file named %SystemRoot%\ 

Memory, dmp. Depending on the current settings, the new dump will either overwrite 
the existing one or be added to its tail. 

Full memory dump includes the entire content of the physical memory, both the 

memory occupied by kernel components and by application processes. Full memory 

dump turns out to be especially useful when debugging ASPI/SPTI applications, 

which, due to their specific features, are capable of dropping the kernel even from 

the application level. Despite its large size, the full memory dump is the favorite op¬ 

tion of all system programmers (most administrators prefer the small memory 

dump). This isn’t surprising, if we recall that hard disks long ago have passed the 

100 GB threshold. From the programmer’s point of view, it is much better to have 

an unneeded full memory dump than end up suffering because of its absence. 

By default, the full memory dump will be saved in the file named %SystemRoot%\ 

Memory, dmp. Depending on the current system settings, it will either overwrite the 

existing file or will be appended to its end. 
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Having chosen the preferred type of memory dump, let’s simulate the system crash 
for the testing purposes. This will help us to get the required skills for recovering the 
system under fire. For this purpose, we’ll need the following: 

□ Windows Driver Development Kit (DDK), distributed by Microsoft for free and 
providing detailed technical documentation of the system kernel; several different 

C/C++ compilers, assembler, and some advanced tools for memory dump analysis. 
□ The W2K_KILL.SYS or any other killer driver, such as BSOD.EXE by Mark Russi- 

novitch, which allows you to get the dump at any given time instance, without 
needing to wait for a critical error to occur (the freeware version ofBSOD.EXE can 

be downloaded from http://www.sysinternals.com). 

□ Symbol files, required for kernel debuggers to function normally and making the 

disassembled code more readable and obvious. Symbol files are included in the 
’’green” MSDN distribution set. In principle, you can get by without them. How¬ 
ever, the environment variable _nt_symbol_path must be defined anyway, other¬ 
wise the i386kd.exe debugger won’t work. 

□ One or more of the books describing the system kernel architecture. The best is 

"Windows 2000 Internals" by Mark Russinovitch and David Solomon. This book 
will be interesting both for system programmers and for administrators. 

After installing DDK on your computer, close all applications and start the killer 
driver. The system will crash, display a BSOD informing of the causes of failure (see 

Fig. 3.4), and write the dump (the process might be accompanied by a rattling sound). 

*** STOP: OxOOOOOOlE (0xC0000005, 0xBE80B000, 0x00000000, 0x00000000) 
KMODE_EXEPTION_NOT_HALTED 

*** Address 0xBE80B000 base at 0xBE80A000, Date Stamp 389db915 - w2k_kill.sys 

Beginning dump of physical memory 
Dumping physical memory to disk: 69 

Fig. 3.4. Blue Screen Of Death (BSOD), signaling the irrecoverable system failure 
and providing brief information about it 

For most administrators, the appearance of BSOD means only one thing — 
the system was feeling so bad that it preferred death to the infamy of unstable opera¬ 
tion. As for the enigmatic characters, they remain a total mystery, but not for true 
professionals! 

Let’s start from the top left position on the screen, and trace all BSOD elements, 
one by one. 

□ *** stop: actually means that the system has stopped. It doesn’t carry any other 

useful information. 
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□ OxOOOOOOlE — this is the Bug Check code that classifies the failure. Decoding of 

the Bug Check codes is provided in DDK. In our case, the code is OxlE — 

kmode_exeptIon_not_halteD, which is specified by a line directly below. Brief ex¬ 

planations of the most typical Bug Check codes are provided in Table 3.1. 

Of course, it cannot serve as a replacement for the companion documentation. 

It will prove you, however, the need to download 70 MB of the DDK. 

□ Numbers in brackets are four Bug Check parameters, the physical meaning of 

which depends on a specific Bug Check code, which has no physical meaning out¬ 

side its context. With regard to kmode_exeption_not_halted, the first Bug Check 

parameter contains the number of the exception that was thrown. According to 

Table 1, this is status_access_violation — access to an invalid memory address. 

The fourth Bug Check parameter specifies the exact address. In this case, it is equal 

to zero, which means that a specific machine instruction attempted accessing by 

a null-pointer, corresponding to the initialized pointer that references unallocated 

memory region. Its address is contained in the second Bug Check parameter. 

The third Bug Check parameter is undefined in this case. 

□ *** Address 0xBE80B00 — this is the address, at which the failure took place. 

In this particular case, it is identical to the second Bug Check parameter. This, 

however, isn’t always the case (Bug Check codes are not actually intended to store 

any addresses). 

□ base at 0xBE80A00 — contains the base loading address of the module that vio¬ 

lated the system operating order, by which it is possible to restore the data about 

that module. (Attention: It isn’t always possible to determine correctly the base 

address.) Using any suitable debugger (for instance, Soft-Ice from NuMega or 

i386kd from Microsoft), let’s issue a command that produces the listing of all 

loaded drivers with their brief characteristics (in i386kd, this is achieved using the 

! drivers command). As a possible alternative, you can use the drivers.exe utility 

supplied as part of NTDDK. No matter which method you choose, the result will 

be approximately as follows: 

• kd> !drivers!drivers 

Loaded System Driver Summary 

Base Code Size Data Size Driver Name Creation Time 

80400000 142dc0 (1291 kb) 4d680 (309 kb) ntoskrnl.exe 

80062000 cc20 ( 51 kb) 32c0 ( 12 kb) hal.dll 

f4010000 1760 ( 5 kb) 1000 ( 4 kb) BOOTVID.DLL 

bffd8000 21ee0 ( 135 kb) 59a0 ( 22 kb) ACPI.sys 

bel93000 16f60 ( 91 kb) cccO ( 51 kb) kmixer.sys 

bddb4000 355e0 ( 213 kb) lOacO ( 66 kb) AIMED.DLL 

Wed Dec 08 02:41:11 1999 

Wed Nov 03 04:14:22 1999 

Thu Nov 04 04:24:33 1999 

Thu Nov 11 04:06:04 1999 

Wed Nov 10 09:52:30 1999 

Fri Nov 12 06:48:40 1999 

i80a000 200 ( 0 kb) aOO ( 2 kb) w2k kill.sys Msn Aug 28 02:40:12 2000 

TOTAL: 835ca0 (8407 kb) 326180 (3224 kb) ( 0 kb 0 kb) 
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□ Note the highlighted string ”w2k_kill.sys”, located at the base address 0xBE80A00. 

This driver is exactly the one that we need! This step, though, isn’t necessary, since 

the name of the faulty driver is displayed on the BSOD, anyway. 

□ Two lines at the bottom of the screen display the progress of the dump creation, 

entertaining the administrator by displaying a sequence of swiftly changing digits. 

Below, you will find the physical meanings of the most common Bug Check hex 

codes with brief explanations. The popularity rating of the Bug Check codes was 

composed by counting the number of times they were referenced in Internet confer¬ 

ences (thanks to Google). 

□ OxOA — symbolic name: irql_not_less_or_equal 

Driver attempted to access the memory page at the dispatch_level or a higher 

level, which resulted in a crash, since Virtual Memory Manager (VMM) operates 

at lower level. 

The possible source of failure can be BIOS, driver, or system service (this is espe¬ 

cially typical for anti-virus scanners and FM tuner). 

As a possible alternative, check the cable terminators SCSI drives and the 

Master/Slave settings on IDE drives. Try to disable the memory caching option 

in BIOS. 

If this doesn’t help, check the four Bug Check code parameters containing 

the reference to the accessed memory, IRQ level, access type (read/write) and 

the address of the driver’s machine instruction. 

□ OxiE — symbolic name: kmode_exception_not_handled 

The kernel component has thrown an exception, and then forgotten to handle it; 

the number of the exception is contained in the first Bug Check parameter. It usu¬ 

ally takes one of the following values: 

• 0x80000003 (status_breakpoint): A software breakpoint was encountered, 

which is a debugging rudiment that the driver neglected to remove. 

• (0xC0000005) status_access_violation: Access to invalid address (the fourth 

Bug Check parameter specifies the exact address) — error by the developer. 

• (0xC00002lA) status_system_process_terminated: Failure of CSRSS and/or 

Winlogon processes. Both kernel components and user-mode applications can 

cause this error. As a rule, this happens if the machine is infected by a virus or 

when the integrity of system files has been violated. 

• (0xC000022l) status_image_checksum_mismatch: The integrity of one or more 

system files has been violated. The second Bug Check parameter contains the 

address of the machine command that has thrown an exception. 



Chapter 3: Practical Advice on Urgent System Recovery 127 

□ 0x24 — symbolic name: ntfs_file_system 

There is a problem with the NTFS.SYS driver. As a rule, this happens as a result 
of physical disc corruption or, more rarely, under conditions of an urgent shortage 
of physical memory. 

□ 0x2E — symbolic name: data_bus_error 

The driver accessed a non-existent physical address. If this isn’t the driver’s fault, 
this means that RAM or the processor cache memory (or video memory) is mal¬ 
functioning or was overclocked to unsupported frequency values. 

□ 0x35 — symbolic name: no_more_irp_stack_locations 

The higher-level driver called a lower-level driver via ioCallDriver interface, but 
there was no free space in the IRP stack and it was impossible to pass the entire IRP. 
This is a deadly situation that has no direct solutions; the only way out is trying to 
delete some of the least important drivers, in which case you may hope to get the 
system up and running again. 

□ 0x3F — symbolic name: no_more_system_ptes 

The excessive fragmentation of the PTE table, which results in the impossibility 
of allocating the memory block requested by the driver. As a rule, this situation 
is characteristic for audio/video drivers manipulating with vast memory blocks. 
Usually, such drivers fail to release allocated memory blocks in due time. To solve 
the problem, try to increase the PTE number (up to 50,000 at maximum) by edit¬ 
ing the following registry entries: HKLM\SYSTEM\CurrentControlSet\Control\ 

SessionManager\Memory Management\SystemPages. 

□ 0x50 — symbolic name: page_fault_in_nonpaged_area 

An attempt to access a non-existent memory page, which is usually caused either by 
hardware malfunction (as a rule, the faulty component is a RAM chip, or video/cache 
memory), or by an incorrectly designed service (this is typical for many anti-virus 
scanners), or by the corruption of the NTFS-formatted volume (run chkdsk with /f 

and /r command-line options). Also try to disable memory caching in BIOS. 

□ 0x58 — symbolic name: ftdisk_internal_error 

Failure in the course of loading a RAID array. When trying to boot the system 
from the primary disk, the system has detected its corruption, after which it tried 
to access the mirror, but there was no partition table there. 

□ 0x7 6 — symbolic name: process_has_locked_pages 

The driver failed to release locked pages after completion of the I/O operation; to 
detect the name of the faulty driver, open the HKLM\SYSTEM\CurrentControlSet\ 

Control\Session Manager\Memory Management branch of the system registry, find 
the TrackLockedPages DWORD parameter, and set its value to 1. Reboot the system, 
and it will then save the traced stack. If a faulty driver causes an error again, there 
will be a BSOD with a Bug Check code equal to OxCB. This will help detect the 
driver that causes this error. 
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□ 0x77 — symbolic name: kernel_stack_inpage_error 

The memory page with the kernel data is not available for technical reasons. If the 
first Bug Check code is not equal to zero, it can take one of the following values: 

• (0xC000009A) status_insufficient_resources — system resources are not 
sufficient. 

• (0xC000009C) status_device_data_error — disk read/write error (or maybe 
bad sector). 

• (0xC000009D) status_device_not_connected — system cannot see the drive 
(controller malfunction, bad contact). 

• (0xC0000l6A) status_disk_operation_failed — disk I/O error (bad sector or 
malfunctioning controller). 

• (0xC0000l85) status_io_device_error — incorrect termination of a SCSI 
drive or IRQ conflict of IDE drives. 

A zero value got the first Bug Check code specifies an unknown hardware 

problem. 

Such messages can appear if the system is infected by viruses, in the event of disk 
corruption, or in the case of RAM failure. Start Recovery Console and run the 

chkDsk command with the /r command-line option. 

□ 0x7a — symbolic name: kernel_data_inpage_error# # # 

Kernel memory page is not available for technical reasons, the second Bug Check 

parameter contains the exchange status, and the fourth - the virtual page address 

that couldn’t be loaded. 

Possible reasons for the failure are bad sectors occupied by the pagefile.sys file, 

failures of the disk controller, or virus infection. 

□ 0x7B — symbolic name: inaccessible_boot_device 

Boot device is unavailable because the partition table is corrupted or doesn’t cor¬ 

respond to the content of the boot.ini file. 

This message may appear after the replacement of the motherboard with an 

integrated IDE controller or the replacement of an SCSI controller, because each 
controller requires its ’’native” drivers. Thus, after installing a hard disk with the 

Windows NT operating system on a computer containing incompatible equip¬ 

ment, the OS won’t start and needs to be reinstalled. Experienced administrators, 

however, can reinstall disk drivers, after booting into the Recovery Console. 
It is also recommended to test the usability of equipment and scan the system 

for viruses. 

□ 0x7 f — symbolic name: unexpected_kernel_mode_trap 

Processor exception unhandled by the operating system. As a rule, this situation is 

caused by hardware malfunction, incorrect CPU overclocking, its incompatibility 
with installed drivers, or algorithmic errors in drivers. 
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Check the usability of your equipment and remove all unnecessary drivers. 

The first Bug Check parameter contains the exception number and can take the 

following values: 

• 0x00 — attempt of dividing by zero 

• 0x01 — system debugger exception 

• 0x03 — breakpoint exception 

• 0x04 — overflow 

• 0x05 — generated by the bound instruction 

• 0x0 6 — invalid opcode 

• 0x07 — Double Fault 

Descriptions of all other exceptions can be found in the technical documenta¬ 

tion for Intel and AMD processors. 

□ 0xC2 — symbolic name: bad_pool_caller 

The current thread has caused an incorrect pool-request, which is usually due 

to an algorithmic error by the driver developer. However, to all appearances, 

the system itself isn’t bug-free, since to eliminate this error, Microsoft recom¬ 

mends the installation of SP2. 

□ OxCB — symbolic name: driver_left_locked_pages_in_process 

After completing the input/output procedure, the driver is unable to release locked 

pages (see process_has_locked_pages). 

The first Bug Check parameter contains the called address, while the second Bug 

Check parameter specifies the calling address. The last, fourth, parameter points to 

the UNICODE string with the driver name. 

□ OxDi — symbolic name: driver_irql_not_less_or_equal 

Same as irql_not_less_or_equal. 

□ 0xE2 — symbolic name: manually_initiated_crash 

A manually generated system failure initiated by pressing the <Ctrl>+<Scroll Lock> 

hotkey combination, provided that the registry parameter CrashOnCtrlScroll 

located under HKLM\System\Cur rent Control Set \ Services \i8042prt\ Parameters 

contains a nonzero value. 

□ 0x7a — symbolic name: kernel_data_inpage_error 

Kernel memory data page is not available for technical reasons. The second 

Bug Check parameter contains the exchange status. The fourth parameter specifies 

the virtual page address that couldn’t be loaded. 

Possible causes include bad sectors in pagefile.sys, disk controller failures, and 

virus infection. 
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Recovering the System after Critical Failure 

Unnatural, practically sexual inclination to the F8 button 

appeared in Rabbit with a good reason. 

"14,400 bands and 19,200 users" 

Operating systems of the Windows NT family can tolerate even critical faults — even 
if they occur in most unsuitable instances (for example, in the course of disk defrag¬ 
mentation). Fault-tolerant file system driver does everything on its own (although, it 
will be wise to run chkDsk anyway). 

If you have chosen the Full memory dump or Kernel memory dump options, 
then, after you boot successfully the next time, the hard disk will drag its read/write 
head for a long period of time, even if there are no attempts to access it. Don’t worry! 
Windows simply relocates the dump from the virtual memory to its constant location. 

After starting Task Manager, you’ll see a new process in the list — SaveDump.exe. 
This is the task that it carries out. The need for such a two-step scheme of saving the 
dump is explained by the fact that the operability of file system drivers isn’t guaranteed 
at the moment of critical error, and the operating system can’t risk using them. 
Instead, it limits itself to temporary storing the dump in virtual memory. By the way, 

if the available amount of virtual memory turns out to be insufficient (Advanced —> 

Performance —> Virtual memory), it will be impossible to save the dump. 
If the system fails to boot, and this error is persistent, don’t forget that you have 

the <F8> key at your disposal. Choose the Last Known Good Configuration menu 
option. Starting the system in safe mode with the required minimum of vitally impor¬ 
tant system services and drivers is a more radical step. System reinstallation is the last 
resort, and it isn’t recommended to resort to this unless absolutely necessary. It is bet¬ 
ter to try to start the Recovery Console and relocate the dump to another machine, 
where you’ll be able to investigate it. 

Loading the Crash Dump 

To load the crash dump into your Windows Debugger (windbg.exe), choose the 

Crash Dump option from the File menu, or press the <Ctrl>+<D> hotkey combina¬ 
tion. If you are working with the i386kd.exe debugger, use the -z command-line op¬ 
tion followed by the fully qualified path name to the dump file. The name of the dump 
file must be separated from the command by one or more blanks, and the 
_nt_symbol_path environment variable must specify the full path to the symbol files. 
Otherwise, the debugger will terminate abnormally. As an alternative, you can use the -y 
command-line option. In this case, the console screen will appear approximately as follows: 
i386kd -z C:\WINNT\memory.dmp -y C:\WINNT\Symbols. Note that it is necessary 

to call the debugger from the Checked Build Environment/Free Build Environment 
console located in the Windows 2000 DDK folder. Otherwise, you’ll fail. 
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Associating DMP files with the i386kd debugger is a good idea. After you do so, 
you’ll be able to call the debugger by simply pressing the <Enter> key in FAR Man¬ 
ager. The choice of debugging tools, though, is a matter of personal preference. Some 
people prefer KAnalyze, while others are quite content with simple DumpChk. 
The range of analysis tools, from which you can choose, is broad (for instance, 
DDK contains four such tools). Thus, for the sake of distinctness, let us choose 
i386kd.exe, also known as Kernel Debugger. 

As soon as the Kernel Debugger console appears on the screen (Kernel Debugger is 
the console application preferred by those who spent their youth sitting at terminals), 
the cursor will quickly disassemble the current machine instruction and drag us into 
the depths of machine code. Enter u from the keyboard, thus making the debugger to 
continue code disassembling. 

According to symbolic identifiers PspUnhandledExceptionlnSystemThread and 
KeBugcheckEx, we are somewhere deep in the kernel, or, to be more precise, somewhere 
in the surroundings of the code that displays the BSOD: 

Listing 3.22. The results of disassembling the memory dump from the current address 

8045249c 6a01 push 0x1 

kd>u 

PspUnhandledExceptionInSystemThread@4: 

80452484 8B442404 mov eax, dword ptr [esp+4] 

80452488 8B00 mov eax, dword ptr [eax] 

8045248A FF7018 push dword ptr [eax+18h] 

8045248D FF7014 push dword ptr [eax+14h] 

80452490 FF700C push dword ptr [eax+OCh] 

80452493 FF30 push dword ptr [eax] 

80452495 6A1E push lEh 

80452497 E8789AFDFF call KeBugCheckEx@20 

804524 9C 6A01 push 1 

804524 9E 58 pop eax 

804524 9F C20400 ret 4 

There is nothing interesting in the stack (look for yourself. To view the stack con¬ 

tents, issue the kb command): 

Listing 3.23. The stack contents don't provide any clues to the actual nature 
of the critical error 

kd> kb 

ChildEBP RetAddr Args to Child 

f403f71c 8045251c f403f744 8045cc77 f403f74c ntoskrnl !PspUnhandledExceptionInSysterrtThread+0xl8 

f403fddc 80465b62 80418ada 00000001 00000000 ntoskrnl!PspSystemThreadStartup+0x5e 

00000000 00000000 00000000 00000000 00000000 ntoskrnl!KiThreadStartup+Oxl6 
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This turn of things is mystifying. You can disassemble the core as many times as 
you like, but it won’t bring you any closer to the solution. This is logical, since the current 
address (8045249Ch) is far beyond the limits of the killer driver (0BE80A00h). So let’s go 
another way. Do you recall the address that was displayed on the BSOD? If you don’t, 
this isn’t a problem! If the system settings don’t prohibit it explicitly, copies of all 

BSODs are saved in the system log. Let’s open it: Control Panel —> Administrative 

Tools —> Event Viewer): 

Listing 3.24. A BSOD copy saved in the system log 

The system was rebooted after a critical error: 

OxOOOOOOle (0xc0000005, 0xbe80b000, 0x00000000, 0x00000000). 

Microsoft Windows 2000 [vl5.2195] 

Memory dump was saved: C:\WINNT\MEMORY.DMP. 

Based on the category of the critical error (0x1e), we can easily determine the ad¬ 

dress of the killer instruction — 0xBE80B000 (in the above-provided listing, it is in 
bold). Now issue the u BE80B000 command to view its contents, and you’ll see: 

Listing 3.25. The results of disassembling of the memory dump by the address 
reported by BSOD 

kd>u 0xBE80B000 

be80b000 alOOOOOOOO mov eax, [00000000] 1 

be80b005 c20800 ret 0x8 

be80b008 90 nop 

be80b009 90 nop 

be80b00a 90 nop 

be80b00b 90 nop 

be80b00c 90 nop 

be80b00d 90 nop 

This looks much closer to the truth. The instruction pointed to by the cursor 
(in the text, it is in bold) calls on the cell that has a zero address, which causes the criti¬ 
cal exception that crashes the system. Now, we know for certain, which branch of the 
program has caused this exception. 

What should we do if we don’t have a copy of the BSOD at our disposal? In fact, 
a copy of the BSOD is always available. You only need to know where to look for it. 
Try opening the dump file using any hex editor, and you’ll find the following strings. 
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Listing 3.26. A copy of a BSOD in the program dump header 

PAGEDUMPd.Yn. 

. .V. . AJIE LflFAA6FA. 

L©. .©. . .A. . .*. . L. 

|A=I.AGE. 

All main Bug Check parameters can be recognized immediately : IE 00 00 00 is 

the failure category code — OxlE (in x86 processors, the least significant byte is located 

at the lower address, which means that all numbers are written in the inverse order); 

05 00 00 CO is the status_access_violation exception code; and 00 BO 80 be speci¬ 
fies the address of the machine command that has thrown this exception. The combi¬ 

nation OF 00 00 00 9308 can be recognized easily as the system Build number (just 

write it in decimal notation). 

To view Bug Check parameters in more readable format, it is possible to use the 

following debugger command — dd KiBugCheckData: 

Listing 3.27. Bug Check parameters displayed in more readable format 

kd> dd KiBugCheckData 

dd KiBugCheckData 

8047e6c0 OOOOOOle C0000005 be80b000 00000000 

8047e6d0 00000000 00000000 00000001 00000000 

8047e6e0 00000000 00000000 00000000 00000000 

8047e6f0 00000000 00000000 00000000 00000000 

8047e700 00000000 00000000 00000000 00000000 

8047e710 00000000 00000000 00000000 00000000 

8047e720 00000000 00000000 00000000 00000000 

8047e730 00000000 eOffffff edffffff 00020000 

The list of other useful commands includes: 

□ ! drivers — the command displaying the list of drivers that were loaded for the 
moment of failure 

□ ! arbiter — the command displaying all arbitrators along with arbitration ranges 

□ ! filecache — the command displaying the information about the file system 
cache and PT 

□ ! vm — the command that produces the report on the virtual memory usage, etc. 

00000000: 50 41 47 45 44 55 4D 50 | OF 00 00 00 93 08 00 00 

00000010: 00 00 03 00 00 80 8B 81 | CO A4 46 80 80 Al 46 80 

00000020: 4C 01 00 00 01 00 00 00 | |1E 00 00 00l |05 00 00 C0| 

00000030: |00 B0 80 BE| 00 00 00 00 | 00 00 00 00 00 41 47 45 
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Unfortunately, it is impossible to provide a complete listing of the commands here. 
If you need it, you’ll find such a listing in the manual for your preferred debugger. 

Naturally, it is much more difficult to detect the actual cause of the system crash in 
the real world. This is because any real driver consists of a large set of functions inter¬ 
acting with one another according to some intricate scheme. These functions form 

complicated hierarchies, sometimes crossed by tunnels of global variables, turning the 
driver into a labyrinth. Let us consider an example. The construction appearing as mov 

eax, [ebx], where ebx == 0, works quite normally, by obediently throwing an excep¬ 
tion, and it is absolutely senseless trying to "talk” with it! It is necessary to locate the 
code that writes a zero value into ebx, which isn’t an easy task. Of course, it is possible 
to scroll the screen upwards, hoping that the program code executes linearly at this 
section, but no one can guarantee that it is actually the case. The possibility to trace 
back is also missing. Roughly speaking, the address of the previous machine instruc¬ 

tion is unknown, so it isn’t recommended to rely on screen scrolling. 
Having loaded the driver being tested into any intellectual disassembler that auto¬ 

matically restores cross-references (such as IDA PRO), we will get a more or less com¬ 
plete idea about the topology of the program’s controlling branches. Naturally, disas¬ 
sembling, because of its static nature, doesn’t guarantee that control hasn’t been passed 
somewhere else. It does, however, narrow the search range. Generally speaking, there 
are lots of good books about disassembling (for instance, I have written one myself — 

"Hacker Disassembliny Uncovered" by Kris Kaspersky); therefore, I won’t concentrate 
on this topic here. I’ll simply wish you good luck. 

|^]Checked Build Environment i38Gkd -z C:\WINNT\memory.dmp -y C:\WINNT\Symbols ^_|nl a 
lUersion 5.00.2184.1 
ICopyright CO Microsoft Corp. 1981-1999 

■Symbol search path is: C:\WINNT\Symbols 

■Loading Dump File [C:sUINNT\memory.drop] 
■Full Kernel Dump File 

(Kernel Uersion 2195 UP Free 
Kernel base = 0x80400000 PsLoadedModuleList = 0x8046a4c0 
Loaded kdextxSG extension DLL 
Loaded userkdx extension DLL 
Loaded dbghelp extension DLL 
8045249c 6a01 push Oxl 
kd> u beSObOOO 
u be80b000 
beSObOOO alOOOOOOOO mou eax,[00000000] 
be80b005 c20800 ret 0x8 
be80b008 90 nop 
be80bOQ9 90 nop 
be80b00a 90 nop 
be80b00b 90 nop 
beSObOOc 90 nop 
beSObOOd 90 nop — 

kd> 

Fig. 3.5. The i386kd debugger at work; despite its minimalistic interface, it is a powerful 
and convenient instrument, allowing you to carry out prodigious tasks by pressing a couple 

of shortcut keys or keyboard combinations (one of which calls up your own script) 
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Fig. 3.6. Windbg with loaded memory dump. Note that the debugger automatically 
highlights the Bug Check codes without waiting for us to instruct it to do so, 

and when attempting to disassemble the instruction that has caused the critical exception, 
the screen displays the string specifying the name of the killer driver: 

"Module Load: W2K_KILL.SYS" — a nice touch 



Chapter 4: Interfaces for 
Interaction with the Hardware 

The only good thing good about "standards" in computer 

science is that there are so many to choose from. 

Folklore 

The methods of interacting with hardware are numerous. Depending on the particular 
features of the problem to be solved and on those of the equipment itself, one of 
a number of control interfaces may be the most important. At the highest level of the 
interface hierarchy, there is the family of operating system API functions that carry out 
the basic input/output operations (for instance, opening a file, or reading data from 
a file). For most applications, this proves to be more than enough. Unfortunately, 
however, this set of functions doesn’t allow you to write even the simplest CD-copying 
program. In order to achieve this, it is necessary to go by at least one level deeper 
in the hierarchy, calling on the driver of specific device directly. 

Standard disc drivers supplied as part of the Windows 9x and Windows NT oper¬ 
ating systems support a limited set of basic commands (such as read a sector, view 
a TOC, etc.), which do not allow for the full implementation of all of the capabilities of 
contemporary CD-ROM/R/RW drives. However, their set of functions is sufficient for 
the writing of the simplest protection mechanisms. 

The overwhelming majority of protection mechanisms of this type can be copied 

well enough by standard copying. This, by the way, is not surprising, since both the 
copier and the "protection” feed from the same "trough”, that is, from the same set of 
instructions. On second thought, perhaps it’s better to say that they use the same set of 
control commands working with the device at the logical level. 
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To create protection that can’t be cracked, you must dive to the very bottom of 
the well, and "talk” to the device in its native language. Although optical drive control¬ 
lers support a high-level set of commands (in fact, at a considerably higher-level than 
floppy drives do), and despite the fact that drive interface is based on specific equip¬ 

ment and CD-ROM/R/RW discs were not initially designed with an eye on protection, 
it is still possible to create discs that are practically impossible to copy at this level. 

Despite popular opinion, it isn’t necessary to write a custom driver to achieve low- 

level control over drives. All of the required drivers have already been written. The de¬ 
veloper has only to choose one of the competing interfaces, which ensures low-level 
interaction with SCSI/ATAPI devices from the user-mode application level. This list is 
quite long, and it includes ASPI, SPTI, and even MSCDEX (which has been practically 

forgotten, but is still supported by Windows 98/ME operating systems). Each of these 
interfaces has its own advantages and drawbacks. That’s why commercial products 
must support them all. 

Since the programming of optical drives goes far beyond the limits of the topic 
of CD protection (which still is the main topic of this book), we will cover hardware 

interfaces only briefly and in a simplified form. 
The information that will be provided below is sufficient for studying all of the 

above-listed interfaces from scratch, and for doing this on your own. Even if you have 
never encountered the topic of programming SCSI/ATAPI devices before, it is unlikely 
that you will experience any difficulties while reading this chapter. 

Access via the CD-ROM Driver 
In operating systems of the Windows family, management of device drivers is carried 

out by means of calls to the DeviceioControl function responsible for sending special 
fsctl/ioctl commands. The fs prefix denotes that this command belongs to the file 

system management group, and is of no interest to us in the context of this book. 
The commands with the io prefix relate to the input/output device, or, to be more 

precise — to its driver. 
The DeviceioControl function simply passes on these commands ”as is,” without 

going deeper into its "physical sense." Therefore, it doesn’t make any sense to look 
for a list of available ioctl commands in the description of DeviceioControl. 

The description doesn’t contain anything like this! It merely provides the list of stan¬ 
dard ioctl commands, while all remaining information related to this topic is pro¬ 

vided by Windows DDK. 
There you will discover, in particular, that the ioctl_cdrom_read_toc command is 

used for reading disc TOC, while for listing session block addresses of multi-session 
discs, there is the ioctl_cdrom_get_last_session command. It is also necessary to pay 
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attention to the ioctl_cdrom_read_q_channel command, which ensures the retrieval 
of the information from the Q-channel of subcode (this is important for retrieving 
key marks). 

Reading CD-ROM sectors in the Raw mode is carried out by the ioctl_cdrom_raw_read 

command, the capabilities of which, unfortunately, are limited to CDDA discs only. 
Reading data from CDDATA discs, sector by sector, is not supported on Raw or on 
user levels. According to the adopted security policy, no application has the right to 
bypass the security subsystem. If this were not the case, intruders would easily be able 
to access confidential data by simply reading the disc at the sector level. Built-in driv¬ 

ers supplied as part of the Windows operating system fully comply with this require¬ 
ment, although third-party developers may violate this restriction if they so chose. 
Windows NT DDK includes the source code of a demo CD-ROM driver (NTDDK\ 
src\storage\class\cdrom\). After introducing some small modifications, this driver will 
agree to read discs of all types without asking any silly questions. To do this, simply open 

the cdrom.c file, find the string "if (rawReadinfo->TrackMode == CDDA) {", and go to 
the branch whose Operationcode is equal to scsiop_READ. Then, modify the code in 
such a way as to ensure that this branch gets control in all other cases. 

NOTE 

The irp_mj_read function, which is present in DDK and which, in the theory, en¬ 

sures that it is possible to read individual logical blocks, is an internal function of the 

driver. Access to this function from the application level is closed and it doesn't make 

any sense to use it in combination with DeviceioControl. 

Table 4.1. Description of IOCTL commands of the standard CD-ROM driver 
(more detailed information is provided in Windows NT DDK) 

IOCTL command 

IOCTL_CDROM_CHECK_VERIFY, 

IOCTL_STORAGE_CHECK_VERIFY (0x2 4 8 0 Oh) 

IOCTL_CDROM_CLOSE_DOOR*, 

I OCT L_ST ORAGE_LOAD_ME DIA (0x2 D4 8 OCh) 

I OCTL_CDROM_FIND_NEW_DEVI CE S, 

I OCTL_STORAGE_FIND_NEW_DEVI CE S 

(0x24818h) 

IOCTL CDROM GET CONTROL 

IOCTL_CDROM_GET_DRIVE_GEOMETRY 

(0x2404Ch) 

Description 

Detects the fact of disc replacement 
(opening/closing the tray) 

Closes the drive tray 

Lists new drives connected after OS startup 
or since the last call to this command 

Reports the current position of audio play¬ 
back 

Determines the disc type and its geometry 
(number of sectors on disc, sector size, etc.) 

continues 
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Table 4.1 Continued 

IOCTL command Description 

IOCTL_CDROM_GET_LAST_SESSION (0x24038h) 

IOCTL_CDROM_GET_VOLUME (0x24014h) 

IOCTL_CDROM_PAUSE_AUDI0 (0x2400Ch) 

IOCTL_CDROM_PLAY_AUD10_MSF (0x24018h) 

IOCTL_CDROM_RAW_READ (0x2403Eh) 

IOCTL_CDROM_READ_Q_CHANNEL (0x2 4 02 Ch) 

IOCTL_CDROM_READ_TOC (0x24000h) 

IOCTL_CDROM_RESUME_AUDIO (0x24010h) 

IOCTL_CDROM_SEEK_AUD10_MSF (0x24004h) 

IOCTL_CDROM_SET_VOLUME (0x24028h) 

IOCTL CDROM STOP AUDIO (0x24008h) 

Lists starting addresses of sessions and 
writes them to the TOC buffer read by 
I OCT L_CDROM_READ_TOC 

Returns the current volume from CD-ROM 

Temporarily pauses audio playback 

Initiates audio playback process from speci¬ 
fied position up to the specified position 

Reads raw sectors from audio discs 

Reads data from the Q subcode channel 

Reads the disc TOC 

Resumes audio playback 

Positions optical head 

Sets volume from the CD-ROM 

Stops audio playback 

* — obsolete and currently removed from the DDK 

The DeviceloControl function is always preceded by a call to the CreateFile 

function, which returns the handle of the appropriate device specified in the following 
format: WAX:, where x is the letter of the drive, with which you are going to work. 
Note that the dwCreationDisposition flag must be set to open_existing, or your at¬ 
tempt to access the drive will fail. A typical example of a call to this function is pro¬ 

vided in Listing 4.1. 

NOTE 

Windows NT registers the CD drive under the following name: \\. \cdRomx, where 

x is the number of the drive (starting from zero) that references the same drive as 

the drive letter, and provides the same set of functions. 

Listing 4.1. An Example illustrating the opening of the device 

HANDLE hCD; // drive descriptor 

hCD=CreateFile("\\\\.\\X:", GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, 0,0); 

if (hCD == INVALID_HANDLE_VALUE) // error 
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The prototype of the DeviceioControl function itself appears as shown in Listing 4.2. 

Listing 4.2. The prototype of the DeviceioControl function 

BOOL DeviceioControl( 

HANDLE hDevice, 

DWORD dwIoControlCode, 

LPVOID lpinBuffer, 

DWORD nlnBufferSize, 

LPVOID lpOutBuffer, 

DWORD nOutBufferSize, 

LPDWORD lpBytesReturned, 

LPOVERLAPPED lpOverlapped 

// Device descriptor 

// IOCTL code of the command to be executed 

// Pointer to the input buffer 

// (Irp->AssociatedIrp.SystemBuffer) 

// Size of the input buffer, in bytes 

// Pointer to the output buffer 

// (Irp->AssociatedIrp.SystemBuffer) 

// Size of the output buffer, in bytes 

// Pointer to the counter of returned bytes 

// Pointer to the structure for asynchronous operations 

Here: 

□ hDevice — the descriptor that was just returned by CreateFile. 

□ dwIoControlCode — the ioctl code for our operation. 

□ lpinBuf fer — the pointer to the buffer that contains the data prepared for passing 
to the device (as a rule, these are command arguments). In the course of function 
execution, the buffer contents are copied into lrp->Associatedlrp. SystemBuffer. 

This is mentioned here in order to prevent you from feeding the entire irp struc¬ 
ture to DeviceioControl when you see this form of abracadabra in DDK. 

□ nlnBuf fersize — the size of the input buffer in bytes. In the course of function exe¬ 

cution, it is copied into the Parameters. DeviceioControl. InputBuf fer Length structure. 

□ lpOutBuffer — the pointer to the output buffer, where the contents of 

Irp->AssociatedIrp.SystemBuffer are returned. 

□ nOutBuffersSize — pointer to the double word, where the number of bytes re¬ 
turned by the driver via output buffer will be written. 

If the operation has been accomplished successfully, the function will return 
a non-zero value. Otherwise, it will return zero. For more detailed information on the 
error, call GetLastError. 

Passing of ioctl commands to the device doesn’t require that you have administra¬ 
tive privileges (except for cases where the device is opened with the generic_write flag). 
This significantly improves the "ergonomic” properties of protection mechanisms 
based on this function. (Let us consider protection mechanisms for a moment, or, to be 

more precise, their ability to resist the attempts at cracking them. Since, obviously, 
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the DeviceioControl function isn't employed in common programs very often, it "un¬ 
masks the headquarters" of the protection mechanism. Consequently, it becomes quite easy 

to "get a bearing" on it. It is enough to set a breakpoint to the DeviceioControl function 

and wait until the ioctl command passed to it takes one of the above-listed 

values. Setting a breakpoint to CreateFile is not wise, because it will produce a large 
number of garbage debugger popups (createFile is called any time when a file is 

opened!created). However, it makes sense to search for the "\\.\" string in the program 

body. If you succeed, the only thing left to do is to click on the cross-reference and then 

press <Enter>. That’s it! Here is the protection code for you. 
In order to ensure a better understanding of this method of interaction between an 

application and the device driver, consider a key fragment of the function that carries out 
this type of interaction (error handling has been omitted for the sake of simplicity). 

Listing 4.3. [/lOCTL.CDDA.raw.read.c] A function demonstrating techniques for 
reading raw sectors via a CDFS driver (intended for CDDA discs only) 

//--[ReadCDDA]- 

// 
// Reads RAW sectors from CDDA discs 

// ========================================== 

// ARG: 

// drive - name of the device from which to read 

// (for example, "\\\\.\\X:") 

// start_sector - number of the first sector to read 

// n_sec - number of sectors to read 

// 
// RET: 

// == 0 - error 

// != 0 - pointer to the buffer containing read sectors 

// 
// NOTE: 

// This function supports discs only of the types supported by 

// the CDFS driver, which is the one that it uses. 

// The built-in Windows NT driver supports only CDDA discs 

//- 
char* ReadCDDA(char *drive, int start_sector, int n_sec) 

{ 

// Supported track types 

typedef enum _TRACK_MODE_TYPE { 

YellowMode2, // native MODE 2 (not CD-data) 

XAForm2, // XA MODE 2 Form 2 (Video-CD) 
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CDDA // Audio-CD 

} TRACK MODE TYPE, *PTRACK MODE TYPE ; 

// the arugment of the IOCTL_RAW_ 

typedef struct RAW READ INFO { 

LARGE_INTEGER DiskOffset; 

ULONG SectorCount; 

TRAC K_MODE_TYPE TrackMbde; 

} RAW_READ_INFO, *PRAW_READ_INFO ; 

#define CDROM_RAW_SECTOR_SIZE 

#define CDROM SECTOR SIZE 

READ command 

// logical block offset in bytes 

// number of sectors to read 

// mode of the track to read 

2352 

2048 

int a; 

HANDLE hCD; 

DWORD x_size; 

char *szDrive; 

BOOL fResult = 0; 

unsigned char *buf; 

RAW_READ_INFO rawRead; 

// PREPARING THE RAW_READ_INFO STRUCTURE, passed to the CD-ROM driver 

rawRead. TrackMode = CDDA; // disc type - Audio CD 

rawRead.SectorCount = n_sec; // number of sectors to read 

rawRead.DiskOffset.QuadPart = start_sector * CDROM_SECTOR_SIZE; 

// The starting sector is specified by the number of its first byte, 

// rather than by its logical number. Theoretically, 

// pass-through numbering of bytes from the first 

// to the last bytes of the disc ensures full abstraction 

// from the hardware (sector size is returned by the 

// IOCTRL_CDROM_GET_DRIVE_GEOMETRY command). 

// In practice, however, driver architects 

// have made a blunder, as a result of which the driver, 

// instead of the pass-through byte numbers, accepts 

// start_address * CDROM_SECTOR_SIZE, 

// where CDROM_SECTOR_SIZE is the logical block size, 

// which, in this case, is equal to the standard sector size 

// of the CDDATA disc (2048 bytes), while the sector size 
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// of CDDA discs is 2352 bytes. Therefore, DiskOffset 

// is equal to start_secor * CDROM_SECTOR_SIZE, 

// while buffer size must be equal to 

// start_secor * CDROM_RAW_SECTOR_SIZE 

// ALLOCATING MEMORY 

buf = malloc(CDROM_RAW_SECTOR_SIZE * n_sec); 

// GETTING THE DEVICE DESCRIPTOR 

hCD = CreateFile (drive, GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, 0,0); 

if (hCD != INVALID_HANDLE_VALUE) 

// PASSING THE IOCTL_CDROM_RAW_READ COMMAND TO THE DRIVER 

fResult = DeviceloControl( hCD, 0x2403E /* IOCTL_CDROM_RAW_READ */, 

SrawRead, sizeof(RAW_READ_INFO), 

buf, CDROM_RAW_SECTOR_SIZE*n_sec, 

&x_size, (LPOVERLAPPED) NULL); 

// OUTPUT OF THE RESULT (if there is any) 

if (fResult) 

for (a = 0; a <= x_size; ++a) printf("%02X%s", buf[a], (a%24)?" n"); 

else 

printf("-ERROR"); printf("\n"); 

// EXITING 

CloseHandle(hCD); return (fResult)?buf:0; 

} 

Studying TOC contents may be useful when analyzing some protected discs. 

Listing 4.4. [/lOCTL.read.TOC.c] A sample program interacting with 
the CDFS driver via IOCTL and reading the TOC contents (with decryption) 

/*- 
★ 

* READING AND DECODING TOC 

★ ============ 

★ 

* build 0x001 @ 26.05.2003 

-*/ 

main(int argc, char **argv) 
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int a; 

HANDLE hCD; 

unsigned char *buf; 

WORD TOC_SIZE; 

BYTE n_track; 

DWORD x_size, b; 

#define DEF_X ’’\\\\. \\G:’’ // default drive 

#de fine argCD ( (argO 1) ?argv [ 1 ] : DEF_X) 

// CHECKING ARGUMENTS 

if (argc < 2) {fprintf (stderr, ’’USAGE: IOCTL. read. TOC \'\ \'\. \\X: \n”); return 0;} 

// TITLE 

fprintf (stderr, ’’simple TOC reader via IOCTL\n”); 

// ALLOCATING MEMORY 

buf = (char *) malloc (buf_len) ; 

// OPENING THE DEVICE 

hCD=C re at e File(argv[1], GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, 0, 0); 

// EXIT IN CASE OF ERROR 

if (hCD == INVALID_HANDLE_VALUE) 

{fprintf(stderr, ”-ERR: %x\n”, GetLastError()); return 0;} 

// PASSING THE CDRQM_READ_TOC CCM4AND TO THE DRIVER 

if (DeviceloControl ( hCD, 0x24000 /* IOCTL_READ_TOC */, 

0, 0, buf, buf_len, &x_size, 0) != 0) 

{ 

// GETTING TOC LENGTH (it is written in reverse order) 

TOC_SIZE = buf[0]*0xl00L + buf[1]; 

printf (”TOC Data Length.%d\n”, TOC_SIZE) ; 

// DECODING OTHER INFORMATION 

printf (’’First Session Number. .. %d\n”, buf [2]) ; 

printf (’’Last Session Number.. .. %d\n\n”, (n_track=buf [3]) ) ; 

for (a = 1; a <= n_track; a++) 

{ 

printf (’’track %d\n{\n”, a) ; 

printf (”\treserved.%x\n”, buf [a * 8 - 4]); 

printf (”\tADR| control.%d\n”, buf [a * 8 - 3]); 
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printf("\ttrack number 

printf(”\treserved.... 

printf(”\treserved.... 

printf("\tmin. 

printf("\tsec. 

printf(”\tframe. 

printf(”}\n\n”); 

} 

// PRINTING TOC CONTENTS IN RAW FORMAT 

printf("\n\t\t\t* * * RAW * * *\n"); 

for(a =0; a < x_size; a++) 

printf("%02X%s", (unsigned char)buf[a], ((a+1)%22)?" ":"\n"); 

printf("\n\t\t\t* ***** *\n"); 

} 

} 

%d\n", buf [a * 8 - 2] 

%d\n", buf [a * 8 - 1] 

%d\n", buf [a * 8 + 0] 

%d\n", buf [a * 8 + 1] 

%d\n", buf [a * 8 + 2] 

%d\n", buf [a * 8 + 3] 

Listing 4.4 is another demo example. It illustrates the technique of reading the 
TOC (Table of Content) — in audio CDs, it represents an analog of the partition table. 

Access in the Cooked Mode (Block Reading Mode) 
The Windows NT operating system is distinguished positively from other systems in 

that it supports the device block reading mode — the so-called cooked-mode.> in which 
all disc contents are interpreted as one large file. Within this ’’file”, it is possible to 
carry out navigation by calling on the SetFilePointer function, and to read/write in¬ 

dividual sectors by calling on ReadFile/WriteFile functions, respectively. The cur¬ 
rent pointer position is specified in bytes (not in sectors!); however, the pointer value 
must be a multiple of the logical sector length (512 bytes for floppy and hard disks, 

and 2,048 bytes for CD-ROM). Otherwise, an error will occur. The number of bytes 
read (or written) at one time must also fit within an integer number of sectors. An at¬ 

tempt to read a part of a sector will fail. 
Despite all the elegance and ease of implementation, this method of controlling 

the drive is also not free from serious drawbacks. First, it doesn’t support file systems 

other than ISO 9660/Ioliet and High Sierra File System. Put simply, this means that 
block reading mode is suitable only for processing data discs, and is useless for reading 

sectors from audio discs. Second, reading raw sectors is impossible in cooked mode, 
and you will have to do only with those parts of these sectors that contain user data. 
This situation significantly weakens the protection mechanism and allows it to easily 

be deceived. For instance, let us assume that protection based on physical defects 
of the medium surface attempts to read its key sector to check its readability. Since the 
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content of correction codes is unavailable to the protection mechanism, it cannot 

distinguish actual physical defects from their rough imitation (e.g., from delibe¬ 
rate distortion of ECC/EDC codes by copying in order to emulate unrecoverable 

read errors). 
To check whether or not the protection uses this method of disc access, try the 

following easy method: Set the breakpoint to the CreateFile function, thus making 
the debugger to react in those — and only those — cases where the first four charac¬ 

ters of the filename to be opened are "\\ A" (which means that the function tries to 
open a device instead of a file). These strings might look similar to the following: 

bpx CreateFileA if (*esp->4=='\\\\A\') . After that, all that remains is to make 
sure that the last back-slash is followed by the drive letter of the required drive 
(on my computer, this is the "WAG:" drive). Having waited for the exit from 
the CreateFile function by "p ret” and having viewed the device descriptor returned 
to it (this descriptor will be loaded into the eax register), you will be able to trap all 
calls to SetFilePointer/ReadFile, the analysis of which will disclose the operating 
algorithm of the protection mechanism. 

The demo example provided below represents a ready-to-use utility for grabbing 
discs with data at the sector level and writing all grabbed information into a file. 

Listing 4.5. [/cooked.sector.read.c] An example illustrating the technique 
for reading sectors in cooked mode 

/*- 
★ 

* READS SECTORS FROM A CD IN BLOCK MODE 

★ _____________ 

★ 

* This program works only under Windows NT, without requiring 

* administrative privileges 

* 

* Build 0x001 @ 19.05.03 

-*/ 

#include <windows.h> 

#include <winioctl.h> 

#include <stdio.h> 

”sector” 

// DEFAULT PARAMETERS 

#define DEF_FN 

#define DEF TO 0x666 
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#define DEF_FRCM 0x000 

#define CDRCM_SECTOR_SIZE 2048 // for MDDE1/MDDE2PQRM1 only! 

// (XMylAND-LINE ARGUMENTS 

#de fine argCD (argv[1]) 

#define argFN ((argc > 2)?argv[2] :DEF_FN) 

#define argFRCM ((argc > 3)?atol(argv[3]):DEF_FRCM) 

#define argTO ((argc>4)?(atol(argv[4])>argFRQM)?atol(argv[4]):argFROM:DEF_TO) 

main(int argc, char **argv) 

{ 

int a; 

FILE *f; 

HANDLE hCD; 

Char *buf; 

DWORD x_read; 

Char buf_n [1024]; 

// CHECKING ARGUMENTS 

if (argc<2) 

{ 

printf (’’USAGE: cooked. sector. read PhysCD [ filename ] [ from] [ to] \n”) ; 

printf(”\tPhysCD - physical name of CD (\”\\\\.\\G:\”)\n”); 

printf(”\tfilename - file name to store follow sector \n’’); 

printf(”\tfrom - start sector\n”); 

printf(”\tto - end sector\n”); 

return 0; 

} 

// TITLE 

fprintf (stderr, ’’cooked sector reader for NT\n”) ; 

// ALLOCATING MEMORY 

buf = malloc (CDRCM_SECTQR_SIZE) ; 

if (!buf) {printf (”-ERR: low memory\n”); return -1;} 

// OPENING THE DEVICE 

hCD = CreateFile(argCD, GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, 0, 0) 

if (hCD == INVALID_HANDLE_VALUE) { 

printf(”-ERR: error CreateFile(%s,....)\n”, argCD); return -1; 
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} 

// INTO 

printf (’’read sector frcm %04d to %04d in %s file\n’’, argFRCM, argTO, argFN) ; 

// POSITIONING THE POINTER TO THE FIRST SECTOR TO EE READ 

SetFilePointer (hCD, CDROM_SECTOR_SIZE * argFRCM, NULL, FILE_BEGIN); 

// READING SECTORS ONE BY ONE 

for (a = argFRCM; a <= argTO; a++) 

{ 

// READING THE NEXT SECTOR 

if (ReadFile(hCD, buf, CDROM_SECTOR_SIZE, &x_read, NULL) && x_read) 

{ 

// WRITING THE SECTOR JUST READ INTO THE FILE 

sprintf(buf _n, ”%s[%04d].dat”, argFN, a); 

if (f=fopen(buf_n, ”wb”)) {fwrite(buf, 1, x_read, f); fclose(f);} 

printf (’’sector [%04d.%04d] read\r”, a, argTO); 

} 

else 

{ 

printf (’’sector %04d read error \n”, a); 

} 

} 

Access via SPTI 
One of the most interesting architectural features of the Windows NT operating sys¬ 
tem is its ability to interact with IDE devices via the SCSI interface! Unfortunately, this 

technology is poorly documented. For instance, sources such as Platform SDK, 
MSDN, and DDK contain only odds and ends. Thus, only a true professional or very 
clever and inquisitive beginner can make sense of this information. 

As one could conclude from reading most discussions in teleconferences, most 
programmers haven’t properly mastered the techniques of device management via the 
SCSI interface. Therefore, it is useful to cover this problem in more detail. 

To solve this problem, we’ll need the following items: 

□ Description of the SCSI interface (see the ” SCSI Architecture Model — 3” document, 

which describes the main concepts of SCSI architecture, and the ”SCSI Primary 
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Commands — 3" document that determines the basic set of commands for all 

SCSI devices; draft versions of both documents are available for downloading 

from: http://www.tl0.org/ftp/tl0/drafts/sam3/sam3r08.pdf and http://www.tlO.org/ 

ftp/tl0/drafts/spc3/spc3rl4.pdf, respectively. As a quick-start manual, a good 

recommendation is to study the ”The Linux SCSI programming HOWTO" docu¬ 

ment, which can be downloaded from http://www.ibiblio.org/pub/Linux/docs/ 

HOWTO/other-formats/pdf/SCSI-Programming-HOWTO.pdf). 

□ Description of SCSI commands specific for CD-ROM drives (see the ”Multimedia 

Commands — 4” document describing the principles of programming CD- 

ROM/R/RW drives. The electronic version of this document can be found here: 

http://www.tl0.org/ftp/tl0/drafts/mmc4/mmc4r02b.pdf). 

□ Description of ATARI interface for CD-ROM/DVD drives (for instance, see the 

"ATA Packet Interface for CD-ROMs" and ”Specification for ATAPI DVD Devices" 

documents. Note that DVD specifications provide better and more comprehen¬ 

sive descriptions of the CD-ROM architecture than ’’native” documentation 

written specially for CD-ROM. Versions of these documents (not the newest, 

but still quite suitable revisions) can be found here: www.stanford.edu/ 

~csapuntz/specs/INF-8020.PDF and ftp.seagate.com/sff/INF-8090.PDF. De¬ 

scriptions of SCSI and ATAPI commands duplicate each other in many respects. 

However, some particularly difficult aspects are sometimes described better in 

one document than the other. Therefore, professional programmers should have 

both of them on hand. 

□ Description of data storage formats, used with CDs (see the "Data interchange on 

read-only 120 mm optical data disks" ECMA-130 standard, known as the "Yellow 

Book"), which can be found here: http://www.ecma-intemational.org/publications/ 

files/ecma-st/Ecma- 130.pdf. This is a basic standard for CD-ROM drives. 

□ Besides this, any literature that in any way considers the aspects of CD-ROM pro¬ 

gramming is useful. So, what is SCSI? It is the standardized, platform-independent 

interface that ensures coordinated interaction of different devices and high-level 

applications. In fact, the acronym SCSI stands for Small Computer System Interface. 

Thanks to SCSI for low-level device management, it is not necessary to write cus¬ 

tom drivers (writing a driver with the only purpose to overcome API limitations is 

absolutely senseless), and this task can be solved at the application level by means 

of sending special CDB blocks to the device. These CDB blocks might contain ei¬ 

ther standard or device-specific control commands, along with all of the parame¬ 

ters that they require. In fact, CDB stands for Command Descriptor Block. An ex¬ 

ample of such a block is provided below. 
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Table 4.2. An example of a CDB which, being transmitted to a SCSI device, 
makes it read sector 0x69 

Offset, bytes Contents 

0x0 0x28 Code of the "read sector" command 

0x1 0x00 Reserved 

0x2 0x00 Sector number — 0x69 

0x3 0x00 

0x4 0x00 

0x5 0x69 

0x6 0x00 Number of sectors 

0x7 0x01 

0x8 0x00 Reserved 

0x9 0x00 Reserved 

OxA 0x00 Reserved 

The first byte of the block stands for the operation command (in our case: 0x28 — 

read one or more sectors), and all other bytes of the block are parameters of this com¬ 

mand. Pay special attention to the fact that the least significant byte of the word resides 

at higher address, i.e., the exact opposite to what you are accustomed to on the IBM 

PC! Therefore, if you transmit the 0x69 0x00 0x00 0x00 sequence as the number of 

the first sector, the sector with the number 0x6900000 will be read instead of sector 

0x00000069, as would be expected. 

A brief description of standard SCSI commands can be found in the "The Linux 

SCSI programming HOWTO" document mentioned earlier. However, this is unlikely 

to be sufficient for our purposes. Therefore, the commands specific to CD-ROM 

drives will be covered separately. Nevertheless, you must first understand how CDB 

blocks are encapsulated in SRB envelopes (SRB stands for SCSI Request Block). With¬ 

out these envelopes, the operating system will simply be unable to understand what 

you are going to do (as a matter of fact, any computer program only does the things 

that it is instructed to do. Sometimes, this is exactly the thing that the user wanted it to 

do, but not always). 

The structure of the SRB block is described in detail in NT DDK. Therefore, you 

won’t cover it here in detail but, rather, will only briefly consider its main fields. 
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Listing 4.6. Brief description of the SCSI_REQUEST_BLOCK structure 

typedef struct _SCSI_REQQEST_BLOCK { 

USHORT Length; // The length of the SCSI_REQUEST_ELOCK structure 

UCHAR Function; // Function (usually, SRB_EUNCTICN_EXECUTE_SCSI = 0, 

// e.g. , send the command for execution to the device) 

UCHAR SrbStatus; // Here, the device displays the command execution 

// progress. The most frequently encountered values are: 

// SRBJSTATUSJSUCCESS = 0x1 - the command 

// completed successfully. 

// SRB_STATUS_EENDING = 0x0 - the command 

// is being executed. 

// SRB_STATUS_ERROR = 0x4 - an error was encountered. 

// Other values are also possible, 

// for a complete list see DDK. 

UCHAR ScsiStatus; // Here the device returns the command completion status. 

// If the command didn't return SUCCESS, 

// then there was an ERROR. 

UCHAR Pat hid // SCSI port to which the device controller is attached. 

// For virtual SCSI devices, this is always set to 0. 

UCHAR Target Id; // Controller of the device on the bus. 

// For IDE devices usually set to the following values: 

// 0 - primary, 1 - secondary 

UCHAR Lun; // Logical device ID within the controller 

// For IDE devices usually set to the following values: 

// 0 - master, 1 - slave 

CHAR QueueTag; // Not used, as a rule, and must be equal to zero 

CHAR QueueAction; // Not used, as a rule, and must be equal to zero 

CHAR CdbLength; // Length of the CDB block. 

// For ATAPI devices always set to 12 (OCh) 

CHAR SenselnfoBufferLength; // the length of the SENSE buffer (see later ) 

// Flags that usually take two values: 

// SRB_FLAGS_DATA_IN = 0x40 - data move from 

// device to computer (read) 

LONG SrbFlags; 
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// SRB_ELAGS_DATA_OUT = 0x80 - data move from 

// computer to device (write) 

ULONG DataTransferLength; // Length of data block to be read or written 

LONG TimeOutValue; // Time-out value in seconds 

PVOID DataBuffer; // The pointer to the buffer containing 

// data to be read/written 

PVOID Sense In foBuffer; // The pointer to the SENSE buffer (see later) 

struct _SCSI_REQUEST_BLOCK *NextSrb; // The pointer to the next SKB. 

// Not executed / as a rule 

PVOID OriginalRequest; // The pointer to IRP. Practically not used 

PVOID SrbExtension; // Not used, as a rule, and must be equal to zero 

UCHAR Cdb[16] ; // The GDB block per sec 

} SCSI_REQUEST_BLOCK, *PSCSI_REQUEST_BLOCK; 

After filling the fields of the scsi_request_block structure appropriately, you can 

pass the SRB to the chosen device by calling on the DeviceioControl function. 
All you have to do is specify an appropriate ioctl code. That’s it! Having swallowed 
the bait, the operating system will pass the CDB block to the appropriate device, and 

that device will (or won’t) carry out the command contained in the CDB block. Pay 
special attention: The CDB block is not processed by the device driver. Instead, 

it is the device itself that processes the CDB. Because of this, you have virtually unlimited 

capabilities for device management. Note that you get all of these capabilities from the 
application level. 

However, everything has its dark side. The device management procedure is rather 
capricious. A single error in filling in one of the fields can result in that the device will 

refuse to carry out the commands passed to it. Instead of command execution, it will 
either return an error code, or nothing at all. Besides this, even the slightest negligence 
can ruin all of the data on all of the hard drives. Therefore, it is necessary to be espe¬ 

cially careful when choosing the Target id and lun values! (To determine automatically 

the CD-ROM address, it is possible to use the SCSI_INQUIRY command — see the DDK 

demo example, which you can find in the \NTDDK\src\win_me\block\wnaspi32 file). 
However, let’s forget about the dangers (after all, the life would be boring without 
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them). Now you are going to discuss the most interesting aspect of our problem, 
namely, searching the ioctl code passed on in the specific SRB. 

As it turns out, it isn’t easy to carry out this procedure directly. In fact, using only 
legal tools, it is simply impossible! For a number of reasons, the Windows developers 
decided only to provide full access to the fields of the scsi_request_block structure 
to driver developers. As for application developers, they are limited to using structures 
such as scsi_pass_through and scsi_pass_through_direct. Actually, these struc¬ 
tures have a goal similar to SRB, but are somewhat limited in their functionality. For¬ 
tunately, there are no limitations on the contents of CDB blocks and, therefore, there 
is still the possibility of low-level control over the hardware. Further details on this 
topic can be found in the section ”9.2 SCSI Port I/O Control Codes’’ in the Windows NT 
DDK documentation and in the source code of the demo example that can be found 
in the \NTDDK\src\storage\class\spti directory. Also, pay special attention to the 
spti.htm file in the same directory. This file provides a detailed description of how to 
control the device via the SCSI interface. 

In line with the name of the directory containing this demo example, this method 
of interaction with the device is known as SPTI (standing for SCSI Pass Through 
IOCTLs). Let us briefly list the main, specific features and limitations of SPTI. 

First, you must have administrative privileges for passing CDBs to devices. This isn’t 
always convenient (although it is a positive situation from the security point of view). 

Second, using of multi-target commands is not permitted (it means that you can¬ 
not issue the command for copying data from device A to device B that bypasses the 
processor — although, contemporary drives support such commands and it would be 
wonderful if it were possible to copy CDs without loading the processor). 

Third, there is no support for the reversible (i.e., bidirectional) movement of data. 
At any given moment, data can be moved either from device to the computer or from 
computer to the device, but simultaneous bidirectional data movement is impossible). 

Fourth, if a class driver has been installed for the target device, CDBs must be di¬ 
rected to the class driver, rather than to the SCSI device itself. This means that to con¬ 
trol the CD-ROM drive, you must interact with it via the \\. \X: device, where x is the 
letter representing the CD-ROM drive. An attempt to access the \\.\ScsiO: device 
will return error code. As experience has shown, this is the main stumbling block for 
all inexperienced programmers who rush ahead without reading the documentation first. 

NOTE 

It is possible to address to the device as WACdRomO or WACdRoml, without the 
terminating colon, where 0 or 1 stands for the ordinal number of the CD-ROM drive 
in the system. In contrast to a common fallacy, stating that the WACdRomO device is 
located at the lower level as compared to \\ AX:. From the operating system's point 
of view, these are synonyms. To make sure that this is true, it is enough to view the 
contents of the object table (objdir \DosDevice), which shows that WAX: is just 
a symbolic link to \\. \CdRomiV. 
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Fifth*, there are strict limitations on the maximum size of the data being sent 
(MaximumTransferLength). These limitations are imposed by specific features of the 
hardware device and the miniport driver serving it. The limitations relate to the 
maximum size allowed for the data block and to the number of physical pages that it 
takes up. In order to determine specific characteristics, it is necessary to send the 

ioctl_scsi_get_capabilities command to the device. This command will return 
the io_scsi_capabilities structure (its definition can be found in the NTDDSCSI.h 
file). Along with other information, this structure contains the MaximumTransferLength 

and MaximumPhysicalPages_in_bytes values. The maximum size of the data 
to be sent is calculated using the following formula: largest transfer = 

min (MaximumTransferLength, MaximumPhysicalPages_in_bytes). Another way is 
to limit the data blocks to 64 Kbytes, which, guaranteed, will be supported by all devices. 
The buffer must be aligned by the value equal to AlignmentMask, which is returned in 

the io_scsi_capabilities structure. The alignment level ensured by the malloc 

function is sufficient for this, and no problems will arise when using it. The situation is 
different where memory allocation is carried out by the ’’char buf [buf_size] ” con¬ 
struction — in this case, there is no guarantee that your program will operate properly. 

Sixth, the scsi_pass_through_direct structure itself contains a significantly 
smaller number of fields and, at the same time, the values contained in fields such as 

Pathid, Targetid, and Lun are simply ignoredi The physical address of the device on 
the bus is determined directly by the operating system by means of the symbolic name 
of the descriptor for the device, to which the scsi_pass_through_direct request is sent. 

Listing 4.7. The format of the SCSI_PASS_THROUGH_DIRECT structure 
(the SCSI_PASS_THROUGH structure is similar to it in many respects. However, 
it doesn't ensure data transmission through DMA) 

typedef struct _SCSI_PASS_THROUGH_DIRECT { 

USHORT Length; 

UCHAR ScsiStatus; 

UCHAR Pathid; 

UCHAR Targetid; 

UCHAR Lun; 

UCHAR CdbLength; 

UCHAR SenseInfoLength; 

UCHAR *Datain; 

ULONG DataTransferLength; 

// Structure size SCSI_PASS_THROUGH_DIKECT 

// Status of the command execution 

// by SCSI device 

// Ignored 

// Ignored 

// Ignored 

// Length of the CDB packet sent to the 

// device (in bytes) 

// Length of the SENSE buffer 

// to return error 

// Direction of the data transmission 

// Size of the data exchange buffer 

// (in bytes) 
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ULONG TimeOutValue; 

PVOID DataBuffer; 

ULONG SenselnfoOffset; 

UCHAR Cdb[16]; 

} SCSI_PASS_THROUGH_DIRECT, *PSCSI 

// Time-out value 

// Pointer to the data exchange buffer 

// Pointer to the SENSE buffer 

// with error information 

// Buffer containing CDB packet 

// (16 bytes maximum) 

ASS THROUGH DIRECT; 

Fortunately, the ’’censorship” mainly relates to fields that are rarely used in practice 
anyway. Therefore, nothing has been lost. Just fill the remaining fields, and the struc¬ 
ture will be ready! 

Naturally, before passing it to the device, it is necessary to first get the descriptor 
for the required device. This can be done as follows: 

Listing 4.8. Opening the drive in order to get its descriptor, which will be used 
for device control 

HANDLE hCD = CreateFile ("\\\\.\\X:", GENERIC_WRITE | GENERIC_READ, 

FILE_SHARE_READ | FILE_SHARE_WRITE, 0, OPEN_EXISTING, 0, 0); 

Making sure that hCD is not equal to invalid_handle_value, pass the received 
descriptor along with the ioctl_scsi_pass_throught_direct structure to 

DeviceioControl function. The function can be called as follows: 

Listing 4.9. Passing the IOCTL_SCSI_PASS_THROUGH structure 

DeviceioControl (hCD, 0x4D014h /* IOCTL_SCSI_PASS_THFOUGH_DIRECT */, &srb, 

sizeof(SCSI_PASS_THROUGH_DIRECT), sense_buf, SENSE_SIZE, Sreturned, 0); 

Here, srb is the filled instance of the ioctrl_scsi_pass_throught_direct 

structure, and returned is the variable, to which the number of bytes returned by 
the device will be written. The sense_buf is the buffer, in which the filled instance 
of the ioctl_scsi_pass_throught_direct structure will be returned, along with 
the sense info — error code of the operation being executed. If the operation is com¬ 
pleted without errors, sense info is not returned, and sense_buf contains only 
ioctl_s cs i_pas s_throught. The position of the sense info location within the buffer 
is determined by the contents of the SenselnfoOffset field. The value of this field 
must be chosen in such a way as to avoid overlapping with the ioctrl_scsi_ 

pas s_throught structure. Simply speaking, the minimum possible offset of the Sense 
Info is equal to: srb.SenselnfoOffset = sizeof(SCSI_PASS_THROUGH_DIRECT). 
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Note that SenseinfoOffset is not a pointer to the sense info but, rather, it is the in¬ 
dex of the first byte of sense info in the returned buffer! 

To detect an error, it is necessary to analyze the number of bytes returned by the 

DeviceioControl function in the returned variable. If it exceeds the size of the 
ioctl_scs i_pass_throught structure, then the buffer contains sense info. If this is 
the case, the sense info presence indicates that there is an error! The sense info format 
is shown in Fig. 4.1. 

D , - Bit 
Byte 7 6 5 4 3 2 10 

0 Valid Error code (70h or 71 h) 

1 Segment number (reserved) 

2 Reserved ILI Reserved Sense key 

3 
Information 

6 

7 Additional sense length (n - 1) 

8 
Command-specific information 

11 

12 Additional sense code 

13 Additional sense code qualifier (optional) 

14 Field replaceable unit code (optional) 

15 SKSV 

(optional) Sense key specific (optional) 
17 

18 
Additional sense bytes 

n 

Fig. 4.1. SENSE info format. Sense info is returned by the device in case of error 

The first byte specifies the error type and usually takes the value of 7 Oh (current 

error) or 7lh (deferred error). Error codes from 72h to 7Eh are reserved, and errors with 

the code 7Eh indicate vendor-specific sense-info format. Error codes from 00h to 6Fh 

are not defined in the ATAPI CD-ROM specification. Therefore, their use is undesirable 

(this warning is intended mainly to hardware developers, and not programmers). 

Error description is encoded by the following three numbers: Sense Key, 

Additional Sense Code (ASC for short) and Additional Sense Code Qualifier (ASCQ). 

On top of this hierarchy is the Sense Key, containing the generic error categories, 
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followed by the ASC, which describes the error in more detail. At the lowest hierarchi¬ 

cal level, there is the ASCQ, which qualifies the additional sense code itself. 

If the error is exhaustively described only by the Sense Key and ASC, the ASCQ is 

missing (or, to be more precise, is undefined). 

Description of the main error codes is provided in two tables below. It should be 
pointed out that the Sense Key value is not critical for error analysis, since each ASC 
will belong to the one Sense Key value. In contrast to this, the same ASCQ can belong to 
different ASCs and, therefore, it makes no sense without the precisely specified ASC value. 

Table 4.3. Main Sense Key values (error categories) and their descriptions 

Sense Key Description 

00h no sense. No additional sense info. The operation was completed successfully. 

Olh recovered error. The operation has completed successfully. However, some 

problems were encountered in the course of its execution. These problems 
were eliminated by the drive itself. Additional information is provided by ASC 
and ASCQ. 

02h not ready. The device is not ready. 

03h MEDIUM ERROR. An irrecoverable error was encountered in the course of op¬ 
eration execution. Most probably, this error was caused by medium defects or 
incorrect data. This sense key may also be returned in cases when the drive is 
unable to distinguish the medium defect from hardware failure. 

04h hardware error. Irrecoverable hardware error (for instance, controller failure). 

05h illegal request. Illegal parameters passed to the drive in the CDB packet 

(for instance, the starting address is larger than the ending address). 

06h unit attention. The medium has been replaced or the device controller has 

been reset. 

07h data protect. An attempt at reading protected data. 

8h—OAh Reserved. 

OBh aborted command. Command execution was for some reason aborted. 

OEh miscompare. Source data do not correspond to the data read from the medium. 

OFh Reserved. 
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Table 4.4. Main ASC and ASCQ codes 

ASC ASCQ DROM Description 

00 00 DROM No additional sense information 

00 11 R Play operation in progress 

00 12 R Play operation paused 

00 13 R Play operation successfully completed 

00 14 R Play operation stopped due to error 

00 15 R No current audio status to return 

01 00 R Mechanical positioning or changer error 

02 00 DROM No seek complete 

04 00 DROM Logical drive not ready — cause not reportable 

04 01 DROM Logical drive not ready — in progress of becoming ready 

04 02 DROM Logical drive not ready — initializing command required 

04 03 DROM Logical drive not ready — manual intervention required 

05 01 DROM Media load — eject failed 

06 00 DROM No reference position found 

09 00 DRO Track following error 

09 01 RO Tracking servo failure 

09 02 RO Focus servo failure 

09 03 RO Spindle servo failure 

11 00 DRO Unrecovered read error 

11 06 RO CIRC unrecovered error 

15 00 DROM Random positioning error 

15 01 DROM Mechanical positioning or changer error 

15 02 DRO Positioning error detected by read of medium 

17 00 DRO Recovered data with no error correction applied 

17 01 DRO Recovered data with retries 

continues 
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Table 4.4 Continued 

ASC ASCQ DROM Description 

17 02 DRO Recovered data with positive head offset 

17 03 DRO Recovered data with negative head offset 

17 04 RO Recovered data with retries and/or CIRC applied 

17 05 DRO Recovered data using previous sector ID 

18 00 DRO Recovered data with error correction applied 

18 01 DRO Recovered data with error correction & retries applied 

18 02 DRO Recovered data — the data were auto-reallocated 

18 03 R Recovered data with CIRC 

18 04 R Recovered data with L-EC 

1A 00 DROM Parameter list length error 

20 00 DROM Invalid command operation code 

21 00 DROM Logical block address out of range 

24 00 DROM Invalid field in command packet 

26 00 DROM Invalid field in parameter list 

26 01 DROM Parameter not supported 

26 02 DROM Parameter value invalid 

28 00 ROM Not ready to ready transition, medium may have 
changed 

29 00 ROM Power on, reset, or bus device reset occurred 

2A 00 ROM Parameters changed 

2A 01 ROM Mode parameters changed 

30 00 ROM Incompatible medium installed 

30 01 RO Cannot read medium — unknown format 

30 02 RO Cannot read medium — incompatible format 

39 00 ROM Saving parameters not supported 

continues 
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Table 4.4 Continued 

ASC ASCQ DROM Description 

3A 00 ROM Medium not present 

3F 00 ROM ATAPI CD-ROM drive operating conditions have 
changed 

3F 01 ROM Microcode has been changed 

40 NN ROM Diagnostic failure on component NN (8Oh- FFh) 

44 00 ROM Internal ATAPI CD-ROM drive failure 

4E 00 ROM Overlapped commands attempted 

53 00 ROM Media load or eject failed 

53 02 ROM Medium removal prevented 

57 00 R Unable to recover table of contents 

5A 00 DROM Operator request or state change input (unspecified) 

5A 01 DROM Operator medium removal request 

63 00 R End of user area encountered on this track 

64 00 R Illegal mode for this track 

B9 00 R Play operation aborted 

BF 00 R Loss of streaming 

As you can see, it’s easy! The only thing you have yet to clarify is AT API. Since you 
aren’t going to interact with ATAPI directly (thanks to Windows architects, you don’t 
have this capability), let us consider its main aspects and features only briefly. 
As a matter of fact, ATAPI specification was adopted in 1996 for devices logically dif¬ 
ferent from hard disks, including optical, magneto-optical, and tape drives. This is 
a packet extension of the interface, which allows for the reception of blocks of control 
information whose structure was borrowed from SCSI, via ATA bus. This fact allows 
us to understand why Windows is so dashing when ’’turning” ATAPI devices into SCSI 
ones. If you neglect the hardware differences between interfaces, which are not "visi¬ 
ble” at the application level, ATAPI will be very similar to SCSI. Control over ATAPI 
devices is carried out using the same CDBs that you have considered earlier. 

Naturally, in order to control the device, it is necessary to know its controlling 
commands. To get this information, you’ll need the "ATAPI Packet Commands for 
CD-ROM devices’’ reference manual. Open this manual to the description of the 
read CD command (BEh code), and you’ll find the following table. 
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Byte"\^ 7 6 5 4 3 2 1 0 

0 Operation code (BEh) 

1 Reserved Expected sector type Reserved 

2 MSB 

Starting Logical Block Address (LBA) 

LSB 

3 

4 

5 

6 MSB 

Transfer length in blocks 

LSB 

7 

8 

9 

Flag bits 

Synch 
field 

Header(s) code User 
data 

EDC& 
ECC 

Error flag(s) Reserved 

10 Reserved Sub-channel data selection bits 

11 Reserved 

18 
Additional sense bytes 

n 

Fig. 4.2. Description of the READ CD command 

Let’s try to clarify this table. The first byte, representing the code of the command 

being executed, doesn’t raise any questions. However, it is followed by the Expected Sector 

Type field specifying the type of required sector. If you jump ahead a few pages, you’ll 

find the codes corresponding to all of the existing sector types: CDDA, Mode 1, Mode 2, 

Mode 2 Form 1, and Mode 2 Form 2. If sector type is not known beforehand, pass the 

0x0 value in this field, meaning that any type of sector is acceptable. 

The next four bytes contain the address of the first sector to be ready specified in the 

LBA (Logical Block Address) format. This abbreviation hides elegant method of pass¬ 

through sector numbering. If you have ever programmed ancient hard disks, you’ll re¬ 

call the bulky computations that had to be carried out in order to determine to which 

head, cylinder, and sector each byte belongs. Now it is possible to do this without all 

that fuss. The first sector has the number 0, followed by 1, 2, 3... and so on, until the 

last sector of the disk is reached. The only important thing that you should bear in 

mind is that the byte order in this double word is inverse, which means that the most 

significant byte of the most significant word comes first. 
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Bytes with numbers from six to eight are occupied by the parameter specifying the 

number of sectors to be read. Note that for sector address, four bytes are allocated, while 
for the number of sectors to be read — there are only three. However, you are not 
going to read the entire disc in one operation! Byte order in this case is also inverse, so 
be careful to avoid errors. Otherwise, you’ll request a reading of half of the entire disc 
when attempting to read only a single sector. 

The ninth byte is especially interesting, because it stores flags that determine which 

parts of the sector must be read. Besides user data, you can request sync bytes, the 
header, EDC/ECC codes, and even read error flags (for cracking some protection 
mechanisms, this information is indispensable, although, unfortunately, not every 
drive supports this feature). 

The tenths bit is responsible for retrieving subchannel data. However, since the 
same data are already present in the header, it is possible, in principle, to do without 
this information. 

Finally, the last (eleventh, counting from zero) byte, isn’t used because it is re¬ 
served. Therefore, in order to ensure compatibility with newer drive models, it must 
be set to zero. 

Naturally, depending on the type and volume of the requested data, the length 
of the returned sector can vary to a great degree. 

Table 4.5. Interrelation between the type of requested data and the length 
of the returned sector 

Data to be 
transferred 

Flag Bits CD-DA Model Mode 2 
non XA 

Mode 2 
Form 1 

Mode 2 
Form 2 

User Data lOh 2352 2048 2336 2048 2338 

User Data + 
EDC/ECC 

18h (10h) 2336 (10h) 2336 (10h) 

Header Only 20 h (10h) 4 4 4 4 

Header Only + 
EDC/ECC 

28 h (10h) Illegal Illegal Illegal Illegal 

Header & User 
Data 

30 h (10h) 2052 2340 Illegal Illegal 

Header & User 
Data + 
EDC/ECC 

38 h (10h) 2344 (30h) Illegal Illegal 

Sub Header 
Only 

40h (10h) 8 8 8 8 

continues 
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Table 4.5 Continued 

Data to be 
transferred 

Flag Bits CD-DA Mode 1 Mode 2 
non XA 

Mode 2 
Form 1 

Mode 2 
Form 2 

Sub Header 
Only + 
EDC/ECC 

48 h (10h) Illegal Illegal Illegal Illegal 

Sub Header & 
User Data 

50 h (10h) (10h) (10h) 2056 2336 

Sub Header & 
User Data + 
EDC/ECC 

58 h (10h) (10h) (10h) 2344 (50 h) 

All Header 
Only 

60 h (10h) 12 12 12 12 

All Header 
Only + 
EDC/ECC 

68 h (10h) Illegal Illegal Illegal Illegal 

All Header & 
User Data 

70h (10h) (30h) (30h) 2060 2340 

All Header & 
User Data + 
EDC/ECC 

78h (10h) (30h) (30h) 2340 2340 

Sync & User 
Data 

90 h (10h) Illegal Illegal Illegal Illegal 

Sync & User 
Data + 
EDC/ECC 

98 h (10h) Illegal Illegal Illegal Illegal 

Sync & Header 
Only 

AOh (10h) 16 16 16 16 

Sync & Header 
Only + 
EDC/ECC 

A8h (10h) Illegal Illegal Illegal Illegal 

Sync & Header 
& User Data 

BOh (10h) 2064 2352 Illegal Illegal 

Sync & Header B8h (10h) 2344 (30h) Illegal Illegal 
& User Data + 
EDC/ECC 

continues 
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Table 4.5 Continued 

Data to be 
transferred 

Flag Bits CD-DA Mode 1 Mode 2 
non XA 

Mode 2 
Form 1 

Mode 2 
Form 2 

Sync & Sub 
Header Only 

COh (10h) Illegal Illegal Illegal Illegal 

Sync & Sub 
Header Only + 
EDC/ECC 

C8h (10h) Illegal Illegal Illegal Illegal 

Sync & Sub 
Header & User 
Data 

DOh (10h) (10h) (10h) Illegal Illegal 

Sync & Sub 
Header & User 
Data + 
EDC/ECC 

D8h (10h) (10h) (10h) Illegal Illegal 

Sync & All 
Headers Only 

EOh (10h) 24 24 24 24 

Sync & All 
Headers Only 
+ EDC/ECC 

E8h (10h) Illegal Illegal Illegal Illegal 

Sync & All 
Headers & 
User Data 

FOh (10h) 2064 2352 2072 2352 

Sync & All 
Headers & 
User Data + 
EDC/ECC 

F8h (10h) 2352 (FOh) 2352 (FOh) 

Repeat All 
Above and 
Add Error 
Flags 

02h 294 294 294 294 294 

Repeat All 
Above and 
Add Block & 
Error Flags 

04h 296 296 296 296 296 



166 Part II: Low-Level Control over Hardware 

IRP 

t. 

4 Upper-filter driver(s) 

| IRP 

NOTE 

At the application level, IDE devices are interpreted as SCSI devices. Naturally, the 
drive doesn't undergo any changes at the physical level. Therefore, IDE CD-ROM 
drive remains an IDE drive, with all of its advantages and drawbacks. However, IRP 
requests to these drivers, while passing via the Storage Class Driver, are translated 
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into SRBs (SCSI request blocks). SRB requests then go to the Storage port driver 
(e.g., directly to the device driver), where they are once again translated into physical 
commands specific to that device (see Fig. 4.3). Detailed information on this absorp¬ 
tion process are provided in NT DDK (see section "17 Storage Driver Architecture"). 

Here, it is enough to emphasize the fact that, beside the commands from the 
irp mj eee family, you can also pass SRB requests, which provide significantly 

more freedom and flexibility, to the device. However, it is impossible to organize this 
interaction directly from the application level because IRP commands are private 
ones, while the DeviceioControl API function passes only public commands that 

can be explicitly processed by the driver in irp mj device control manager. 

Now, to get some practical experience, let us create a program reading raw sectors 
from CDs. The key fragment of such a program (along with the required comments) is 

provided below: 

Listing 4.10. [/SPTI.raw.sector.read.c] The function that reads raw sectors via SPTI 

#define RAW_READ_CMD 

#define WHATS_READ 

#define PACKET_LEN 

//#define WHATS_READ 

//#define PACKET_LEN 

OxBE // ATAPI RAW READ 

0xF8 // Sync & All Headers & User Data + EDC/ECC 

2352 // length of one sector 

0x10 // User Data 

2048 // length of one sector 

//- [SPTI RAW SECTOR READ] 

// The function reads one or more sectors from the CDRCM in RAW format 

// according to the flags passed to it. 

// 

// AR6: 

// CD - The drive to be opened 

// (something like n\\\\.\\X:" or "WW-WCdRomO") 

// buf - The buffer, to which the data must be read 

// buf len - Buffer size in bytes 

// StartSec - Number of the starting sector, counting from zero 

// NJSECTCR - Number of sectors to read 

// flags - What information must be read 

// (see SCSI/ATAPI specification ) 

// 

// RET: 

// != 0 - The function was executed successfully 

// = = 0 - The function returned error 

// 
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// NOTE: 

// - Wbrks only under NT/W2K/XP and requires 

// administrative privileges 

// 
// - 64 K of data per operation at maximum 

//- 
SPTI_RAW_SECTQR_READ(char *CD,rihar *buf,int buf_len,int StartSec,int N_SEC,char flags) 

HANDLE hCD; 

SCSI_PASS_THROUGH_DIRECT srb; 

DWORD returned, length, status; 

// OPENING THE DEVICE 

hCD = CreateFile ( driver, GENERIC_WRITE | GENERIC_READ, 

FILE_SHARE_READ|FILE_SHARE_WRITE, 0, OPEN_EXISTING, 0, 0) 

if (hCD == INVALID_HANDLE_VALUE) { printf(”-ERR: open CD\n”); return 0;} 

// FORMING SRB 

memset (&srb, 0, sizeof (SCSI_PASS_THROUGH_DIRECT) ); // Initialization 

s rb.Length = sizeof(SCSI_PASS_THROUGH_DIRECT) ; 

srb.Pathld = 0; 

srb.Targetld = 6; 

srb.Lun = 9; 

srb.CdbLength = 12; 

srb.SenseInfoLength = 0; 

srb.Dataln = SCSI_IOCTL_DATA_IN; 

s rb.DataTrans ferLength = PACKET_LEN*N_SECTOR; 

srb.TimeOutValue = 200; 

srb.DataBufferOffset = buf; 

srb.SenseInfoOffset = 0; 

// SCSI controller ID 

// Ignored 

// Ignored 

// Length of the GDB 

// packet 

// Senselnfo not needed 

// Vfe are going to read. 

// Length of data 

// to read 

// TimeOut value 

// Pointer to the 

// buffer 

// Senselnfo is 

// not needed 

// GDB packet containing ATAPI commands 

s rb. Cdb [ 0 ] = RAW_READ_CMD; // Read RAW sector. 

srb.Cdb[l] = 0x0; // Any type of the disk 

// format is acceptable. 

// The number of the first sector to be read. Most significant byte 
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// of the most significant word goes first, least significant byte 

// of the least significant word goes last 

srb.Cdb[2] = HIBYTE(HIWORD(StartSector)); 

s rb.Cdb[3] = LOBYTE(HIWORD(StartSector)); 

srb.Cdb[4] = HIBYTE(LOWORD(StartSector)); 

srb.Cdb[5] = LOBYTE(LOWORD(StartSector)) ; 

// Number of sectors to be read 

s rb.Cdb[6] = LOBYTE(HIWORD(N_SECTOR)); 

s rb.Cdb[7] = HIBYTE(LOWORD(N_SECTOR)); 

s rb.Cdb[8] = LOBYTE(LOWORD(N_SECTOR)); 

srb.Cdb[9] = flags; // What should be read 

srb.Cdb[10] =0; // Subchannel Data Bits 

srb.Cdb[11] =0; // Reserved 

// SENDING SRB TO AIAPI device 

status = DeviceIoControl(hCD, IOCTL_SCSI_PASS_THROUGH_DIRECT, 

&srb, sizeof(SCSI_PASS_THROUGH_DIRECT), &srb, 0, returned, 0); 

} 

return 1; 

It only remains to note that protection mechanisms that interact with the disc 

via SPTI can be cracked easily by setting a breakpoint to the CreateFile/ 

DeviceioControl functions. To prevent "extra" popups of the debugger, the break¬ 
point filter must react only to those calls to the CreateFile function, whose leftmost 
argument is set to WAX: or to WACdRomN. The second left argument of 

the DeviceioControl must automatically represent either ioctl_scsi_pass_ 

throught, or ioctl_scsi_pass_throught_direct, the hex codes of which are equal 
to 0x4D004 and 0x4D014, respectively. 

Access via ASPI 
A debugged program is one, for which 

the failure conditions haven’t been found yet. 

Programmer folklore 

There are two main drawbacks of the above-described SPTI interface: It requires ad¬ 
ministrative or root privileges for controlling the device and, even worse, it is sup¬ 

ported only by operating systems of the Windows NT family. Windows 9xlME operating 
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systems lack support for this interface. The only legitimate method of accessing the 

CD-ROM under Windows 9x is using 16-bit thunk for directly accessing the MSCDEX 
MS-DOS driver, which provides a considerably wider set of functional capabilities 
than in the Windows driver. Naturally, parallel support of two families of operating 
systems requires significant efforts from programmers, which results in a considerable 
increase of the cost of software products. 

To simplify the development of cross-platform applications, Adaptec has devel¬ 
oped a special system-independent interface allowing for the control of various SCSI 

devices from the application level. This interface became known as ASPI, which stands 

for Advanced SCSI Programming Interface (although, unofficially, it is often called 

Adaptec SCSI Programming Interface). 
System independence in ASPI is ensured by the two-layer model of its organiza¬ 

tion: Architecturally, it comprises the low-level driver and application-level wrapper 

library. ASPI driver was developed taking into account specific features of the OS. It is 
responsible for directly controlling the SCSI bus (regardless of whether this bus is 

physical or virtual). Since the interface between the operating system and drivers 
changes from system to system, a special ASPI library is used for hiding these differ¬ 
ences. This library provides the common unified interface for all operating systems. 

Let us consider how ASPI interface is implanted into the OS in the example 
of Windows ME (see Fig. 4.4). At the highest level of the hierarchy are the 

WNASPI32.DLL and WINASPI.DLL libraries, intended for 32- and 16-bit ap¬ 
plications, respectively. These DLLs export the following three basic ASPI func¬ 

tions: GetASPI32DLLVersion, GetASPI32SupportInfo and SendASPI32Coramand 

(the latter being the most important), and three helper functions: GetASPi32Buffer, 

FreeASPl32Buf fer, TranslateASPl32Address (the latter is present only in the 32-bit 
version of the library). 

By calling the DeviceioControl function, they communicate with the ASPI driver, 
which resides lower in the hierarchy. Depending on the OS, this driver is called either 
APIX.VXD (Windows 9x), or ASPI.SYS (Windows NT). In the course of its initializa¬ 
tion, this driver creates the MbMmDp32 device. Don’t ask me what this name means, 

since the answer is buried deep inside the Adaptec company. 

NOTE 

16-bit applications communicate with the driver via the I868h function of the 2Fh 

interrupt. The details of this process can be discovered by disassembling the 
winaspi.dll library. By the way, this DLL is tiny — its size is just 5 K. 

In principle, nothing prevents us from communicating directly with ASPI driver, 
bypassing the WNASPI32.dll. In fact, most developers of protection mechanisms 
choose this method. To do so, it is enough to disassemble WNASPI32.dll and discover 
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the correspondence between ASPI commands and ioctl codes (for obvious reasons, 
ASPI protocol isn’t documented). Actually, nothing could be easier than setting the 
breakpoint to SendASPi32Command, after which the hacker can easily locate the pro¬ 
tection code. With regard to DeviceioControl calls, they are more difficult to handle, 
because they are too numerous. Moreover, beginner crackers of protection mecha¬ 
nisms (the most common group of hackers) have only a vague idea of the input/ 
output architecture, to say nothing about the ASPI protocol. For qualified and experi¬ 
enced hackers, though, this protection doesn’t present a serious obstacle (more details 
are provided in "Revealingprotection mechanisms"). 

The ASPI driver itself ’’connects” to SCSI and IDE/AT API ports, thanks to which it 
allows for the control of all these devices (including CD-ROM drives). 

NOTE 

Client modules (in Fig. 4.4, they are designated by the numbers 1, 2, and 3) send their 

requests to the Installable File System driver (designated by the number 6). Client 

modules also have ASPI libraries for 32- and 16-bit applications at their disposal (they are 

designated by the numbers 4 and 6). They, to a degree, stand apart from the rest of the 

system because they are optional components developed by a third-party company — 

Adaptec. The file system driver redirects a request it has received to one of the following 

specialized drivers, among which is the CD-ROM driver, CDFS.VxD, designated by the 

number 8. Its tasks include supporting CD file systems such as ISO 9660, High Sierra, 

etc. One level below, there is the Volume Tracker (14), which traces events such as disc 

replacement, and, even lower, there is the driver that supports this particular CD-ROM 

model itself. This is the so-called CD type-specific driver, implemented by CDVSD.VxD 

module. Among other tasks, it is responsible for assigning the CD drive letter. In fact, this 

is the sector level of interaction with the CD, and there are no file systems here. Although 

this driver is specific to the CD-ROM drive model, it is absolutely independent of its 

physical interface, because it relies on the CD-ROM device SCSI'zer (21), which converts 

IOP requests arriving from higher-level drivers into SRB packets directed to lower-level 

drivers (more details on this topic are provided in the section 'Access via the SCSI Port"). 

The SCSI CD-ROM helper (23) resides even lower, ensuring interaction between the 

SCSI'zer and the SCSI port. The SCSI port itself, created by the SCSI ports manager (26), 

represents a unified, system-independent tool for organizing the interaction between 

medium-level drivers and physical (or virtual) devices. The ASPI driver (18) relates to one 

of these SCSI ports. The ASPI driver is implemented in the APlX.VxD file and goes up to 

its "wrappers" — WNASPI32.DLL and WNASPI.DLL (numbers 11 and 12, respectively). 

Below the SCSI manager reside the mini-port drivers, which translate SCSI requests into 

the "language" of the specific interface bus. In particular, the driver ensuring support 

for IDE devices is implemented by the ESDI_506.PDR file (number 29). Naturally, if 

necessary, you can communicate with IDE devices via IDE/ATAPI ports (25), which are 

implemented by the same driver — ESDI_506.PDR (the ASPI driver, due to performance 

considerations, does exactly this). The left part of the flowchart, representing the hierarchy 

of drivers of all other disk drives, will not be covered here, since it isn't related to our 

discussion in any way. 
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Fig. 4.4. Architecture of the Windows 98/ME Input/Output system 
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For ASPI programming, at least two things are required: the ASPI driver and ASPI 

SDK. The driver is freely downloadable from the Adaptec Web server (the drivers 

for the following operating systems are available: MS-DOS, Novell, Windows 9x, 

Windows NT/W2K/XP). As for SDK, at some point it ceased to be a freeware, and is 

distributed on a commercial basis, although its price is relatively small (somewhere 

around $10). However, all of the materials required for your work, including docu¬ 

mentation, header files, and libraries can be borrowed from Windows Me DDK (which 

is included as part of Windows 2000 DDK). Thus, if you have a copy of W2K DDK, there’s 

no need to worry. If this is not the case, get MSDN library, which is distributed along 
with Microsoft Visual Studio 6.0. Here, you’ll find documentation and header files, 

while the missing libraries for the appropriate DLLs can be produced on your own 
(lib.exe with the /def command-line key). Anyway, it is possible to do without these 

libraries by loading all required functions via LoadLibrary/GetProcAddress. 

Since the ASPI interface comes with good documentation (the programmer’s 

manual comprises about 35 pages), mastering it shouldn’t cause any serious problems 

(at least after you have become acquainted with SPTI). Besides, Windows Me DDK in¬ 

cludes a completed demo example, which can be found in the \src\win_me\block\ 
wnaspi32\ folder. Despite the fact that it is intended for Windows Me, it is also suitable 

for other operating systems, including Windows 98, Windows 2000, Windows XP, etc. 

However, this example is extremely awkward, with a large number of errors. 

In relation to clarity and readability, I have to say that it would be hard to find a less 
illustrative example demonstrating ASPI operation! It is definitely much better to in¬ 

vestigate the source codes of the CD slow program, which can be easily found on the 
Internet. The only problem is that this program is in Assembly language. Therefore, 

it is necessary to have previous experience in this language. 
Let us briefly list the main drawbacks of the aspi32ln.c demo example. First, this 

is not a console application. Therefore, most of its code has no relation to ASPI, since 

it implements the program’s GUI. Second, this example uses the unified function 

for receiving notifications from two commands: scsi inquiry and scsi readio. 

In 50% of the cases, the latter is replaced by its constant 0x28, which also doesn’t im¬ 

prove code readability. Third, CD-ROM drives are only partially supported by this 

program. The poorly designed architecture of this application did not allow the devel¬ 

opers to achieve their goals. Consequently, the branch responsible for reading from 

CD-ROM in the ASPi32Post function is specially commented out. If you remove this 

blocking, there will be read errors, since the program is oriented only towards the 

drives where sector size equals 0x200 bytes. CD-ROM drives, designed to work with 

discs having sector size four times greater than this value, do not fall within this cate¬ 
gory. If you want to avoid redesigning the entire program, the only option is to in¬ 

crease the size of the requested block to 0x800 bytes (in this case, four sectors will be 

read from hard disks at a time, which is more than acceptable). Finally, the increment 
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(e.g., the computation of the address of the next block to be read) is designed so terri¬ 

bly that it is not usable at all. 
There’s no point in concentrating on criticisms of demo examples (even an 

imperfect demo program is still better than nothing), so let’s proceed with studying 
the ASPI interface, or, to be more precise, its most important command — 
SendASPi32Coimnand, which ensures the passing of SRB blocks to the device. Hope¬ 
fully, you’ll be able to master all of the other problems on your own, without encoun¬ 
tering any difficulties. 

The SRB Execscsicmd structure, which contains the data on the SRB request, is 
almost a twin of scsi pass through direct, as there are more similarities than dif¬ 
ferences between them. Look at the following: 

Listing 4.11. The SRB_ExecSCSICmd structure 

typedef struct 

{ 

BYTE SRB_Cmd; 

BYTE SRB_Status 

BYTE SRB_HaId; 

BYTE SRB_Flags; 

DWORD SRB_Hdr_Rsvd; 

BYTE SRB_Target; 

BYTE SRB_Lun; 

WORD SRB_Rsvdl; 

DWORD SRB_BufLen; 

LPBYTE SRB_BufPointer; 

BYTE SRB_SenseLen; 

BYTE SRB_CDBLen; 

BYTE SRB_HaStat; 

BYTE SRB_TargStat; 

LPVOID SRB_PostProc; 

BYTE SRB_Rsvd2[20] ; 

BYTE CDBByte[16] ; 

BYTE SenseArea[SENSE_LEN+2]; 

} 

// ASPI command code = SC_EXEC_SCSI_CMD 

// ASPI command status byte 

// ASPI host adapter number 

// ASPI request flags 

// Reserved, MUST = 0 

// Target's SCSI ID 

// Target's LUN number 

// Reserved for Alignment 

// Data Allocation Length 

// Data Buffer Pointer 

// Sense Allocation Length 

// CDB Length 

// Host Adapter Status 

// Target Status 

// Post routine 

// Reserved, MUST = 0 

// SCSI CDB 

// Request Sense buffer 

SRB_ExecSCSICmd, *PSRB_ExecSCSICmd; 

Note that in order to control the device, you needn’t know its descriptor! It is 
enough to specify its physical address on the bus (i. e., correctly fill the SRB Haid and 

SRB Target fields). How can you find them? Quite easily. Just send the inquiry (code I2h) 

command to all physical addresses. The device, physically or virtually associated 
with that port, will return identification information (among other useful data, it will 
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contain the device name). Non-existent devices won’t return anything and the oper¬ 

ating system will report an error. 
The simplest program for device polling might appear as follows: 

Listing 4.12. Sequential polling of ports in order to detect devices connected to them 

#define MAX_ID 8 

#de fine MAX_INFO_LEN 4 8 

SEND_SCSI_INQUITY() 

{ 

#define MAX_LUN 8 // max. possible number of logical devices 

BYTEAdapterCount; 

DWORD ASPl32Status; 

unsigned char buf[0xFF]; 

unsigned char str[0xFF]; 

unsigned char CDB [ATAPI_CDB_SIZE] ; 

long a, real_len, adapterid, targetid; 

// Getting the number of adapters on the bus 

ASPl32Status = GetASPI32SupportInfo(); 

AdapterCount = (LOBYTE(LOWORD(ASPl32Status))); 

// Preparing the CDB block 

memset(CDB, 0, ATAPI_CDB_SIZE); 

CDB[0] = 0x12; // INQUIRY 

CDB[4] = OxFF; // Response size 

// Spamming the ports in order to find the required device 

for (adapterid = 0; adapterid < MAX_LUN; adapterid++) 

{ // Attention! The use of AAAAAAAAAAAAA AdapterCount is not 

// permitted here, as recommended in some manuals, because device 

// adapter numbers do not necessarily follow one another directly. 

// If there is a "gap" in numbering, 

// one or more devices will remain undetected 

for (targetid = 0; targetid < MAX_ID; targetid++) 

{ 

a = SEND_ASPI_CMD(adapterid, targetid, CDB, 

ATAPI_CDB_SIZE, 0, buf, OxFF, ASPI_DATA_IN); 

if (a == SS_COMP) 

{ 

real_len = (buf[4]>MAX_INFO_LEN)? buf[4]:MAX_INFO_LEN; 

memcpy(str, &buf[8], real_len); str[real_len] = 0; 



176 Part II: Low-Level Control over Hardware 

} 

printf("%d.%d <— %s\n", adapterid, targetid, str); 

The result of program execution on the author’s computer looks as shown below. 
(Pay special attention to the fact that the addresses of the devices connected to a virtual 

SCSI bus created by the ASPI driver might differ from their actual physical addresses. 
For example, in this case, the PHILIPS drive sitting on the physical IDE port with the 

number 0, happened to occur on virtual port 1, since the port number 0 was occupied 
by the Virtual Clone CD driver. Note that if the latter is removed from the system, the 
mapping between virtual and physical addresses, in principle, should be fully restored. 
However, this isn’t guaranteed.) The leftmost digit represents the adapter ID. The fol¬ 
lowing digit stands for the target ID. 

Listing 4.13. Devices connected to the author's computer 

o
 

o
 < — ELBY DVD-ROM 1.0 

1.0 < — IBM-DTLA-307015 TX20 

1.1 < — PHILIPS CDRW2412A Pi.55V01214DM10574 

2.0 < — ST380011A 3.06 

2.1 < — TEAC CD-W552E 1.09 

3.0 < — AXV CD/DVD-ROM 2.2a 

3.1 < — AXV CD/DVD-ROM 2.2a 

3.2 < — AXV CD/DVD-ROM 2.2a 

Another important advantage of the ASPI interface in comparison to SPTI is sup¬ 
port for the asynchronous mode of request processing. Having sent a request to read 
a certain number of sectors, you can continue the execution of your program without 

waiting for the sector-reading process to be completed. Of course, to achieve a similar 
result using SPTI interface it is enough to create another thread. However, this solu¬ 
tion is not as elegant as the previous one. 

Listing 4.14. [\etc\RAW.CD.READ\aspi32.raw.c]. Demo example of a program that 
reads raw sectors from the CD 

#include "scsidefs.h" 

#include "wnaspi32.h" 

void ASPI32Post (LPVOID); 
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#define F_NAME "raw.sector.dat" 

/* ASPI SRB packet length */ 

#define ASPI_SRB_LEN 0x100 

#define RAW_READ_CM OxBE 

#define WHATS_READ 0xF8 // Sync & All Headers & User Data + EDC/ECC 

#define PACKET_LEN 2352 

//#define WHATS_READ 0x10 // User Data 

//#define PACKET_LEN 2048 

#define MY_CMD RAW_READ_CMD 

HANDLE hEvent; 

//-[DWORD READ_RAW_SECTOR_FROM_CD]- 

// This function reads one or more sectors from the CD-ROM 

// in RAW mode, according to the flags passed to it. 

// 
// ARG: 

// adapter_id 

// read_id 

// 
// buf 

// buf_len 

// StartSector 

// 
// NJSECTOR 

// flags 

// 
// RET: 

// 
// 
// NOTE: 

// The function returns control before accomplishing the request. 

// Therefore, at the moment of exiting, the data buffer is still 

// empty. It gets filled only when calling 

// the ASPl32Post function (you can modify it as needed) . 

- Bus number (0 - primary, 1 - secondary) 

- Number of the device on the bus 

(0 - master, 1 - slave) 

- Buffer, into which the data must be read 

- Buffer size in bytes 

- Starting number of the sector from which to read 

(numbering starts from 0) 

- Number of sectors to be read 

- Information to be read (see the ATAPI specification) 

- Doesn’t return anything 
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// For signaling the operation completion, it is recommended to use 

// events. 

// 
// The function operates under Windows 9x/ME/NT/W2K/XP 

// and _doesn’t_ require administrative privileges. 

// However, ASPI driver must be installed. 

//- 
READ_RAW_SECTOR_FROM_CD (int adapter_id,int read_id,char *buf,int buf_len, 

int StartSector,int N_SECTOR,int flags) 

{ 

PSRB_ExecSCSICmd SRB; 

DWORD ASPI32Status; 

// Allocating memory for SRB request 

SRB = malloc (ASPI_SRB_LEN); memset(SRB, 0, ASPI_SRB_LEN) ; 

// PREPARING SRB block 

S RB -> SRB_Cmd = SC_EXEC_SCSI_CMD; 

SRB->SRB_HaId = adapter_id; 

SRB->SRB_Flags = SRB_DIR_IN|SRB_POSTING; 

SRB->SRB_Target = read_id; 

SRB->SRB_BufPointer = buf; 

SRB->SRB_BufLen = buf_len; 

SRB->SRB_SenseLen = SENSE_LEN; 

SRB->SRB_CDBLen = 12; 

SRB->CDBByte [0] = MY_CMD; 

SRB->CDBByte [1] = 0x0; 

// Execute SCSI 

// commend 

// Adapter ID 

// Asynchronous 

// data read 

// Device ID 

// Buffer for 

// loading data 

// Buffer length 

// SENSE buffer 

// length 

// Size of ATAPI 

// packet 

// ATAPI command 

// CD format - any 

SRB->CDBByte [2] 

SRB->CDBByte [3] 

SRB->CDBByte [4] 

SRB->CDBByte [5] 

// Number of the first sector 

HIBYTE(HIWORD(StartSector)) ; 

LOBYTE(HIWORD(StartSector)); 

HIBYTE(LOWORD(StartSector)); 

LOBYTE(LOWORD(StartSector)); 

SRB->CDBByte [6] 

// Number of sectors to be read 

= LOBYTE(HIWORD(N_SECTOR)) ; 



Chapter 4: Interfaces for Interaction with the Hardware 179 

SRB->CDBByte 

SRB->CDBByte 

[7] = HIBYTE(LOWORD(N_SECTOR)) ; 

[8] = LOBYTE(LOWORD(N_SECTOR)) ; 

SRB->CDBByte [9] = flags // 

SRB->CDBByte [10] = 0; // 

SRB->CDBByte [11] = 0; // 

What info must be read? 

Subchannel data are not needed 

Reserved 

// Address of the procedure that will receive notifications 

SRB->SRB_PostProc = (void *) ASPI32Post; 

// Sending an SRB request to the device 

SendASPI32Coiranand (SRB) ; 

// Returning from the function _before_ accomplishing 

// execution of the request 

return 0; 

//- 
// This callback function is called up by ASPI and gains control 

// after the accomplishment of request execution or in case of error. 

// As a parameter, it receives the pointer to the instance of 

// the PSRB_ExecSCSICmd structure, containing all required information 

// (status, pointer to the buffer, etc.) 

//- 
void ASPl32Post (void *Srb) 

{ 

FILE *f; 

// Has our request completed successfully? 

if ((((PSRB_ExecSCSICmd) Srb)->SRB_Status) ==SS_COMP) 

{ 

// THIS CODE CAN BE MDDIFIED AS YOU NEED 

//- 
// Writes the sector contents into the file. 

// ATTENTION: 

// PSEB_ExecSCSICmd) Srb)->SRB_BufLen contains the buffer size 

// rather than the actual length of read data. If the number of bytes 

// returned by the device is smaller than the buffer size, 

// then its tail will contain the garbage! 

// Here we use the SRB_BufLen field 

// only because when calling the SendASPl32Command function 
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// we carefully trace the buffer size to ensure 

// its correspondence to the volume of returned information. 

if (f= fopen(F_NAME, "w")) 

{ 

// Writes the sector into the file 

fwrite(((PSRB_ExecSCSICmd) Srb)->SRB_BufPointer, 1, 

((PSRB_ExecSCSICmd) Srb)->SRB_BufLen, f); 

fclose(f); 

} 

// Beeping and "unfreezing" the flow, thus notifying that 

// read procedure has been completed 

Mes sageBeep(0); SetEvent(hEvent); 

//- 

} 

} 

main(int argc, char **argv) 

{ 
void *p; int buf_len, TIME_OUT = 4000; 

if (argc<5) 

{ 

fprintf(stderr, "USAGE:\n\tRAW.CD.READ.EXE adapter_id"\", 

read_id, StartSector, n_sec\n"); return 0; 

} 

// Calculating the buffer length and allocating memory for it 

// ATTENTION: proceeding in such a way, you can use blocks 

// only up to 64 K. 

// If you need larger buffers, use the GetASPl32Buffer function. 

buf_len = PACKET_LEN*atol(argv[4]); p = malloc(buf_len); 

// Creating an event 

if ((hEvent = CreateEvent(NULL,FALSE,FALSE,NULL)) == NULL) return -1; 

// Reading one or more sectors from the CD 

READ_RAW_SECTOR_FROM_CD(atol(argv[1]), atol(argv[2]), p, buf_len, 

atol(argv[3]), atol(argv[4]), WHATS_READ); 

// W&iting until the operating is completed 

WaitForSingleObject(hEvent, TIME_OUT); 

return 0; 

} 
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Having compiled and run this example, you can make sure that it runs successfully 

both under Windows 9x and under Windows NT without having administrative 
privileges! On one hand, this is all very well, but, on the other hand... the presence of 
the ASPI driver creates a large hole in security system, which will help malicious soft¬ 

ware do whatever it is instructed in relation to controlling your hardware. Would you 
like to infect MBR/boot sectors? Here you are. Or perhaps you’d like to wipe the entire 
hard drive clean? Nothing could be easier. Therefore, if you care about the security of 
your information, it’s advisable to delete the ASPI32 driver from your computer (to do 
so, you only need to remove the ASPI.SYS file from the WINNT\System32\Drivers di¬ 

rectory). Naturally, all of the above-mentioned information relates only to operating 
systems from the NT family, since, in Windows 9x, direct access to equipment can be 

gained even without all of this mess. 

Access via the SCSI Port 
As was already mentioned above (see the "Access via SPTI" section), you can, independ¬ 
ent of the physical interface of the disk drive (be it SCSI or IDE), communicate directly 
with it via the unified SCSI interface. In other words, the driver for a specific device 

(CD-ROM drives, in particular) is absolutely abstracted from specific features of the bus 
interface implementation of that specific device. This means that even if drives working 

via infrared ports appear tomorrow, the CDROM.SYS driver won’t know anything about 
it, and will control such devices via an SCSI port. 

Even if there are no SCSI controllers installed on your computer, a couple of us¬ 
able SCSI can be found anyway. Of course, these ports are virtual rather than physical. 
However, from the software point of view, they look as if they are physical. Try to use 

the CreateFile function to open the \\. \scsiO: device and it will be opened success¬ 
fully, thus confirming the existence of virtual SCSI ports (do not forget that the string 

must be terminated by a column). By sending specific ioctl commands to SCSI ports, 
you can control any physical or virtual device connected to that port. In fact, there is 
another abstraction level between the virtual SCSI port and the physical interface bus, 

the level occupied by SCSI miniport, which, actually, abstracts the SCSI port driver from 
specific physical equipment (see "Access via SCSI miniport” for more details). 

Naturally, before sending ioctl commands to the SCSI port, it would be nice to 

know what equipment is connected to that port. There are numerous methods for 
solving this problem. These methods range from the ioctl_scsi_get_inquiry_ 

data command sent to the device (see the source code of the Windows NT DDK 
demo example located in the NTDDK\src\storage\class\spti directory), after which 
the device, along with other information, will report its name (something like 

PHILIPS CDRW2412A), to the object table viewed, which you will carry out here. 
Windows NT DDK contains the objdir.exe utility, which, as its name suggests, allows 
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the contents of the device object tree object to be displayed in the form of a directory. 
Devices available to open using the CreateFile function are stored in a directory with 
the name \DosDevices\. Looking at the name, you might think that it contains the 
names of devices available from under MS-DOS that Windows NT must emulate to 

ensure backward compatibility. In reality, however, this directory is used actively 
by the Win32 subsystem of the Windows NT operating system. Any time the 
CreateFile function accesses a specific logical device (for example, when it tries to 
open the C:\MYDIR\myfile.txt file), the Win32 subsystem looks in the \DosDevices\ 

directory to find out to which internal device this logical device is connected. Internal 
devices are visible only under Native-NT, while they are senseless for all of its sub¬ 
systems other than Win32. In particular, disk C: under Native-NT has the name 

of \Device\HarddiskVolumel, while the fully qualified path to the myfile.txt file 
looks as follows: \Device\HarddiskVolumel\MYDlR\myfile.txt. However, try to 
feed this string to the CreateFile functions, since it probably won’t understand what 
do you want from it. 

Thus, the \DosDevices\ directory serves as a kind of connecting link between the 
Win32 subsystem and the Windows NT kernel. Now, return to our problem and con¬ 
sider, to which native device the "SCSI” logical device is connected. Start objdir with 
the \DosDevices command-line option and redirect its output to the file (objdir 

\DosDevices | more as alternative). Along with lots of other information, you will 
find the following strings (if you don’t have DDK, use the Soft-Ice debugger, where it 
is necessary to give the objdir \?? command to achieve a similar result. Note the two 

question marks in the command line, since the \DosDevices directory isn’t actually 
a directory but, rather, a symbolic link to the \?? directory, or its shortcut). 

Listing 4.15. The relationship between logical SCSI devices and native-NT 
devices 

ScsiO: SymbolicLink - \Device\Ide\IdePortO 

Scsil: SymbolicLink - \Device\Ide\IdePortl 

Scsi2: SymbolicLink - \Device\Scsi\axsakil 

As it turns out, SCSIO: and SCSI1 devices represent nothing other than symbolic 
links to IDE ports with numbers 0 and 1, respectively. The idePortO and idePortl de¬ 
vices, though, are not IDE ports in a physical sense. These are virtual SCSI ports 

created by the ATAPI.SYS driver in the course of its initialization. The same driver 
creates the symbolic links \DosDevices\scsiO: and \DosDevices\scsil:, as well as 

the shortcuts \Device\ScsiPortO and \Device\ScsiPortl, unavailable for the Win32 
subsystem and intended for internal use at the driver level. Naturally, ATAPI.SYS 
is not limited to the creation of all of the devices listed above, but also serves them 
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by providing higher-layer drivers with a unified interface for interacting with the in¬ 

stalled equipment. 
As concerns the SCSI2: device, it is not connected to any physical bus, and the 

virtual CD-ROM drive is connected to its corresponding SCSI port. This virtual drive 
is created by the Alcohol 120% program, or, to be more precise, by its driver — 
AXSAKI.SYS! Higher-level drivers (in particular, CDROM.SYS), won't suspect any¬ 

thing. Instead, they will work with the virtual disk as if it were a physical one. This is 
not surprising, since the SCSI port concept ensures the independence of higher-level 

drivers from specific hardware, with which they "operate." This is why NT allows such 
an easy implementation of various physical device emulators! 

By the way, after disassembling the Alcohol 120% program, you might reveal some 
dirty and obscene words used as variable names or labels. 

SCSI devices can be managed from the application level via the STPI interface. 
However, instead of the drive letter, it is necessary to specify the name of the SCSI 

port, to which this drive is connected. The main advantage of such a method of con¬ 
trolling devices lies in that you don’t necessarily need administrative privileges to 
communicate with the drive. Normal user privileges are more than sufficient. Besides, 

direct operation with the SCSI port is somewhat faster than accessing the device via 
a long chain of higher-level drivers and the numerous filters wrapping them. 

However, all attempts at passing an SRB block via the SCSI port inevitable end 
with an error. For example, the following code refuses to work. Why? 

Listing 4.16. An example of incorrect operation with a virtual SCSI port 

// Getting the SCSI port descriptor 

hCD = CreateFile ("\\\\.\\SCSI1", GENERIC_WRITE|GENERIC_READ, 

FILE_SHARE_READ|FILE_SHARE_WRITE, 0, OPEN_EXISTING, 0, 0); 

// Forming the SRB block 

// Sending the SRB block directly to the SCSI port 

status = DeviceloControl(hCD, IOCTL_SCSI_PASS_THROUGH_DIRECT, &srb, 

sizeof(SCSI_PASS_THROUGH), &srb, 0, Sreturned, FALSE); 

Newsletters are swarming with questions relating to this problem. Some users re¬ 
port that this code operates correctly, while the majority complains that it doesn’t. 

The answer can be found in the DDK (if you read it carefully, of course). Here it is: 
9.2 SCSI Port I/O Control Codes: "If a class driver for the target type of device exists, the 

request must be sent to that class driver. Thus, an application can send this request directly 
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Fig. 4.5. The I/O Subsystem architecture in NT 
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to the system port driver for a target logical unit only if there is no class driver for the 
type of device connected to that LU.M In less technical language, direct control over the 
SCSI port from the application level is possible only for those devices that have no class 

driver installed. For instance, suppose that you have connected some non-standard 
hardware to your computer. In this case, it is possible to control this hardware directly 
via the SCSI port, since this hardware has no class driver! However, CD-ROM drives, 
which you are discussing here, are a different matter. They always have a class driver 

installed and, therefore, the operating system does everything possible to prevent di¬ 
rect communication with such hardware via the SCSI port, since this is the only reli¬ 
able way of avoiding conflicts. 

Does this mean that direct access to CD-ROM drives via the SCSI port is impossi¬ 
ble? Well, only partially. Attempts to access the SCSI port directly are actually blocked 
by the operating system. However, the same operating system provides you with the 
ability to control the device via an SCSI miniport. What is a miniport? This is exactly 
what you will consider now. 

Accessing the Drive via SCSI Miniport 
The SCSI miniport driver allows the system to abstract from the details of the physical 
interfaces for specific equipment. In the interest of brevity, let us simply call it the 
minidriver, although this is actually only partially true. After all, along with the mini¬ 
drivers for SCSI ports, there are also drivers for video and network miniports. How¬ 
ever, since neither of these relates to the context of our discussion in any way, there 
won’t be any misunderstanding. 

Hierarchically, the miniport driver resides between the physical (virtual) devices 

connected to specific interface buses of the computer (IDE/PCI/SCSI) and the SCSI 
port driver. The miniport driver is a system-independent driver, which, at the same 

time, depends on specific features of the HBA (Host Bus Adapter), i.e., the physical/ 
virtual equipment that it serves. The miniport driver exports a range of functions 
of the ScsiPortxxx family, which are intended for use by higher-level drivers. Usually, 
it is implemented as a Dynamic Link Library (DLL), which, quite naturally, executes 
in ring 0 of the kernel level. 

It is this driver that translates SCSI requests into commands for the device con¬ 

nected to it, creates virtual SCSI ports with names such as \Device\ScsiPortx, and 

ensures support for storage media having interfaces different from SCSI. For example, 

drivers such as ATAPI.SYS, serving CD-ROM drives with the ATAPI interface, and 

DISK.SYS, serving hard disks, are implemented in the form of miniport drivers. 
Control of the miniport is carried out using special ioctl code passed to the 

DeviceioControl function and defined as ioctl_scsi_miniport in the NTDDSCSI.H 
file. If you don’t have a copy of NT DDK, here is its direct value: 0x4D008. Naturally, 
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before calling on the DeviceioControl function, you must first open an appropriate 
SCSI port using the CreateFile function. The code that carries out this task might 
appear as shown in the listing below. Pay special attention to the fact that the port 

name must appear as scsix:, rather than ScsiPortx; the name must be terminated 
with a colon. Otherwise, the attempt will fail. 

Listing 4.17. Opening the SCSI port for controlling the miniport driver 

h = CreateFile("\\\\.\\SCSI1:", GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | 

FILE_SHARE_WRITE, NULL,OPEN_EXISTING, 0, NULL); 

Here, you open the first (numbered from zero) SCSI port that, as you already 
know, corresponds to the first IDE channel, or, to put it in other words, to the secon¬ 
dary IDE controller (on the author’s computer, the CD-ROM drive is connected to 
that particular controller). To detect the drive location on an unknown computer, you 
can use the ioctl_scsi_get_inquiry_data ioctl code, which makes the miniport 
driver list all the equipment at its disposal, after which it only remains to correctly de¬ 
termine its type (for more details, see NTDDK\SRC\STORAGE\CLASS\SPTI). 

However, miniport control is carried out in a different way from that used to con¬ 
trol the SCSI port! At this level, there are no standard commands, and you have to take 
into account the specific features of the implementation of specific hardware. Instead of 
SRB requests, the minidriver accepts the srb_io_control structure defined as follows: 

Listing 4.18. The purpose of the SRB_IO_CONTROL structure fields 

typedef struct _SRB_IO_CONTROL 

ULONG HeaderLength; 

UCHAR Signature[8]; 

ULONG Timeout; 

ULONG ControlCode; 

ULONG ReturnCode; 

ULONG Length; 

// sizeof(SRB_IO_CONTROL) 

// Minidriver signature 

// Max. waiting time for the request 

// to be completed (in seconds) 

// Command code 

// Here we will get the return code. 

// The length of entire transmitted buffer 

} SRB_IO_CONTROL, *PSRB_IO_CONTROL; 

Well, you understand the meaning of the HeaderLength field, but what is the 
signature? The point is that the controlling codes of miniport drivers aren’t stan¬ 

dardized. On the contrary, they are defined by the drivers’ developers. Therefore, 
the control codes of one driver are unlikely to fit those of another. In order to avoid 
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conflicts, each miniport driver contains a unique signature, which it compares carefully 

to the one passed on by an application in the signature field of the srb_io_control 

structure. If these signatures do not match, the driver responds with the following mes¬ 
sage: srb status invalid request. Unfortunately, the interfaces of the standard 

minidrivers — ATAPI.SYS and DISK.SYS — are not documented. As a result, it’s a diffi¬ 
culty for those who are unable to disassemble. With regard to the disassembler, it imme¬ 

diately shows that the signatures of both drivers appear as SCSIDISK. The signature of 
the Alcohol 120% minidriver appears as Alcohohc (the latter doesn’t present any special 

interest to us because it doesn’t correspond to standards). 
It is somewhat more difficult to understand program codes. Although the special¬ 

ists constantly reading MSDN and therefore, having a sound knowledge in it, might 
recall that ’’...this specification describes the API for an application to issue SMART 
commands to an IDE drive under Microsoft Windows 95 and Windows NT. 

Under Windows 95, the API is implemented in a Vendor Specific Driver (VSD), 

Smartvsd.vxd. SMART functionality is implemented as a ’pass-through’ mechanism, 
whereby the application sets up the IDE registers in a structure and passes them to the 

driver through the DeviceloControl API.” 
Well, one of the drivers facilitates the manipulation of the registers of the IDE 

controller as needed, which means that it provides low-level access to the disk — 

very well. The interface with the SMART driver is well documented (see "MSDN -> 

Specifications a Platforms -> SMART IOCTL API Specification"). But the silence in re¬ 

lation to Windows NT appears to be somewhat irritating. Clearly, there are no VxDs 
in Windows NT. However, it is clearly stated in this document that SMART API is im¬ 

plemented there. If you use a few gray cells and a little bit of intuition work, you might 
be able to guess that SMART support in NT is through standard means! The only 
question that remains is as follows: How and by what means? Neither SDK nor DDK 
contain any information on this topic. However, careful study of the header files in¬ 

cluded with NT DDK can help. Look at what you can find in the scsi.h file. 

Listing 4.19. The SMART control commands in Windows NT, which can be 
passed to the miniport driver via the ControlCode field of the 
SRB 10 CONTROL structure 

// 
// SMART support in atapi 

// 

#define IOCTL_SCSI_MINIPORT_SMART_VERSION ( (FILE_DEVICE_SCSI«16) + 0x0500) 

#define IOCTL_SCSI_MINIPORT_IDENTIFY ( (FILE_DEVICE_SCSI«16) + 0x0501) 

#define IOCTL_SCSI_MINIPORT_READ_SMART_ATTRIBS ( (FILE_DEVICE_SCSI«16) + 0x0502) 

#define IOCTL_SCSI_MINIPORT_READ_SMART_THRESHOLDS ( (FILE_DEVICE_SCSI«16) + 0x0503) 

#define IOCTL SCSI MINIPORT ENABLE SMART ( (FILE DEVICE SCSI«16) + 0x0504) 
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#define IOCTL_SCSI_MINIPORT_DISABLE_SMART ( (FILE_DEVICE_SCSI«16) + 0x0505) 

#define IOCTL_SCSI_MINIPORT_RETURN_STATUS ( (FILE_DEVICE_SCSI«16) + 0x0506) 

#define IOCTL_SCSI_MINIPORT_ENABLE_DISABLE_AUTOSAVE ( (FILE_DEVICE_SCSI«16) + 0x0507) 

#define IOCTL_SCSI_MINIPORT_SAVE_ATTRIBUTE_VALUES ( (FILE_DEVICE_SCSI«16) + 0x0508) 

#define IOCTL_SCSI_MINIPORT_EXECUTE_OFFLINE_DIAGS ( (FILE_DEVICE_SCSI«16) + 0x0509) 

#define IOCTL SCSI MINIPORT ENABLE DISABLE AUTO OFFLINE (FILE DEVICE SCSI«16) + 0x050a 

You might suspect that, in Windows, NT SMART isn’t implemented in the mini- 
port driver, and disassembling of ATAPI.SYS actually confirms this. So "why include 
IOCTL commands in the header file without documenting them?” would be a fair 
question for Microsoft’s technical writers. And, according to the license agreement, 
disassembling any OS components is prohibited. Instead of complaining, let’s read the 
"SMART IOCTL API Specification” once again. In this document, you discover that 
in order to control the miniport driver under Windows NT, it is necessary to pass 
the code of one of the above-listed commands to the ControlCode field of the 
srb_io_control structure. For example, ioctl_scsi_miniport_identify. 

Immediately following the end of the srb_io_control structure, there must be 
sendcmdinparams, defined as shown in Listing 4.20. 

Listing 4.20. The SENDCMDINPARAMS structure providing direct access 
to IDE registers 

typedef struct _SENDCMDINPARAMS 

DWORD 

BYTE 

DWORD 

BYTE 

cBufferSize; 

IDEREGS irDriveRegs; 

BYTE bDriveNumber; 

bReserved[3]; 

dwReserved[4] ; 

bBuffer[1]; 

// Buffer size in bytes or zero 

// The structure containing 

// the values of IDE registers 

// Physical disk number, 

// starting from zero 

// Reserved 

// Reserved 

// The starting point of the input buffer 

} SENDCMDINPARAMS, *PSENDCMDINPARAMS, *LPSENDCMDINPARAMS; 

This means that the input buffer of the DeviceioControl function must look as 
follows: 

SRB_IO_CONTROL SENDCMDINPARAMS D Buffer 
(if available) 

Fig. 4.6. Structure of the input buffer of the DeviceioControl function 
for controlling the miniport driver under Windows 9x/NT 
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The first structural element, cBuf f ersize, containing the bBuf f ersize, is obvious 
and, therefore, of little interest. As for the I dregs structure, it represents a virtual 
goldmine of information. Just look for yourself: 

Listing 4.21. The IDEREGS structure providing low-level access to IDE registers 

typedef struct _IDEREGS 

{ 

BYTE bFeaturesReg; 

BYTE bSectorCountReg; 

BYTE bSectorNumberReg; 

BYTE bCylLowReg; 

BYTE bCylHighReg; 

BYTE bDriveHeadReg; 

BYTE bCommandReg; 

BYTE bReserved; 

// IDE Features register 

// IDE SectorCount register 

// IDE SectorNumber register 

// IDE CylLowReg register 

// IDE CylHighReg register 

// IDE DriveHead register 

// Command register 

// Reserved 

} IDEREGS, *PIDEREGS, *LPIDEREGS; 

Anyone who has ever read the ATA/ATAPI specification and programmed devices 
with the IDE interface should immediately recognize the well-known registers — 

Command, Drive/Head, Cylinder High, Cylinder Low, Sector Number, Sector Count, 

and Features. That they are listed in reverse order in the ideregs structure is only 
a minor implementation detail. The main fact is that using this structure, it is possible 
to do whatever you like with the drive, implementing all of the tricks of which it is ca¬ 
pable. It is hard to believe that the security subsystem contains such a security loop¬ 
hole. This is aggravated further by the fact that administrative privileges are not re¬ 
quired for controlling the miniport. Jumping with joy, let’s fill in the remaining fields 
of the sendcmdinparams structure, namely: bDriveNumber — the physical number of 
the drive, numbering from zero, and the buffer for passing the data. 

IMPORTANT 

This is a buffer itself, rather than a pointer to a buffer. 

However, for the moment, you are not going to write any data to the disc, are we? 

Well, then let's leave this field blank. 

Alas! An attempt to "feed” the drive with a command other than those from the 
SMART family, will fail. After all, the miniport driver isn’t as stupid as you supposed. 
It checks the contents of the ideregs structure before passing it to the IDE drive. 

The only exception has been made for the drive identification command — OxEC, about 
which Microsoft has openly informed us: "There are three IDE commands supported 
in this driver, id (OxEc), atapi id (OxAl), and smart (OxBO). The ’subcommands’ 
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of the SMART commands (featuring register values) are limited to the currently 

defined values (OxDO through 0xD6, 0xD8 through OxEf). smart subcommand 0xD7, 

write threshold value, is not allowed. Any other command or smart subcommand 
will result in an error being returned from the driver. Any smart command that is not 
currently implemented on the target drive will result in an abort error from the 
IDE interface". 

At first glance, it seems that you have failed altogether. However, this is not so the 

case! After all, this check can be disabled. Let us disassemble the ATAPI.SYS driver and 
see what can be done. The following fragment is responsible for checking IDE com¬ 

mands passed to the drive in order to determine whether they belong to the allowed list. 

Listing 4.22. A fragment of the disassembled listing of the ATAPI.SYS driver 

.text:00013714 aScsidisk db 'SCSmiSK' 

; here is our signature aaaaaaaa 

.text:000137DF 

text:000137DF loc_137DF: 

text:000137DF mov [edi], ebx 

text:000137El mov eax, [ebx+18h] 

text:000137E4 push 8 

text:000137E6 add eax, 4 

text:000137E9 push offset aScsidisk 

text:000137EE push eax 

text:000137EF call ds: RtlCcnpareMemory 

text:000137F5 cmp eax, 8 

text:000137F8 jnz oc_13898 

text:000137F8 

text:000137EE mov esi,[ebx+18h] 

text:00013801 mov eax,[esi+lOh] 

text:00013804 cmp eax, lB0500h 

text:00013809 jz loc_1389F 

text:000138OF mov ecx, lB0501h 

text:00013814 cmp eax, ecx 

text:00013816 jz short loc 1382D 

text:00013818 jbe short loc 13898 

text:0001381A cmp eax, lB050Ah 

text:000138IF ja short loc 13898 

text:00013821 push ebx 

, 0 ; DATA XREF: SCSI_MINIPORT + CC-io 

; CODE XREF: SCSI_MINIPORT + B5tj 

; The length of the string 

; to be compared 

; Pattern signature 

; The signature passed 

; by an application 

; Do signatures natch? 

; No natch, exiting 

; Getting Control code 

; IOCTLJSCSIJinaK^ 

; Processing .. SMART_VERSIQN 

; iocni^scsijyms^ 

; Processing ..JDENTIFY 

; IF ControlCode < IDENTIFY THEN go to exit 

; IOCTL_SCS I_MINI PORT_ENABLE_DI SABLE... 

; IF ControlCode > ENABLE_DISAEL. go to exit 
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text:00013822 

text:00013823 

text:00013828 

text:0001382D 

push 

call 

jimp 

edi 

sub_12412 

loc_1393E 

; processing other SMART commands 

text:00012412 sub 12412 proc near ; CODE XREF: SCSI_MINIPORT+106lp 

text:00012433 crmp [ebp+var_lE], OBOh ; SMART-corrrmand 

text: 00012437 

text:00012437 

|jnz loc 126331 ; If this isn't SMART, go to exit 

; Checks start from here 

text:0001243D imovzx eax, [ebp+var 1C] 

text:00012441 imov eax, [ebx+eax*4+OBOh] ; Loading Drive/Head register into EAX 

text:00012448 test al, 1 ; Comparing the least significant bit 

; of AL to one 

text:0001244A jz loc_1262F ; If the least significant bit 

;is equal to zero, then exit 

text:00012450 test al, 2 ; Comparing the next bit of AL to one 

text:00012452 jnz loc_1262F ; If it isn't equal to zero, exit 

text:00012458 imov al, [ebp+var 24] ; Loading the Feature register to AL 

text:0001245B crmp al, ODOh ; Is this SMART READ DATA? 

text:0001245D imov [ebx+OCCh], al 

text:00012463 jz loc_12523 ; If yes, start processing 

text:00012469 crmp al, ODlh ; Is it obsolete? 

text:0001246B jz loc_12523 ; If yes, start its processesing 

text:00012471 crmp al, 0D8h ; Is this SMART ENABLE OPERATIONS? 

text:00012473 jz short loc 12491 ; If yes, start its processing 

text:00012475 crmp al, 0D9h ; Is this SMART DISABLE OPERATIONS? 

text:00012477 jz short loc 12491 ; If yes, start its processing 

text:00012479 crmp al, 0DA ; Is this SMART RETURN STATUS? 

text:0001247B jz short loc 12491 ; If yes, start its processing 

text:0001247D crmp al, 0D2h ; Is this SMART ENBL/DSBL ATTRIBUTE AUTOSAVE? 

text:0001247D crmp al, 0D2h ; It this really the case?! 

text:0001247F jz short loc 12491 ; If yes, start its processing 

text:00012481 crmp al, 0D4h ; Is this SMART EXECUTE OFF-LINE IMMEDIATE? 

text:00012483 jz short loc 12491 ; If yes, start its processing 

text:00012485 crmp al, 0D3h ; Is this SMART SAVE ATTRIBUTE VALUES? 

text:00012487 jz short loc 12491 ; If yes, start its processing 

text:00012489 crmp al, ODBh ; Is this SMART ENABLE OPERATIONS? 

text:0001248B 

text:00012491 

jnz loc_12633 ; If no, then exit 

.text:00012491 

.text:00012491 

loc 12491: CODE XEEF: sub_12412+61 tj 

; Camiand processing starts from here 
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.text:00012491 

text:00012491 push 1 

text:00012493 pop eax 

text:00012494 amp ds: 0FFDF02C0h, eax 

text:000124 9A jnz short loc 124A5 

text:0001249C amp dword ptr [ebx+4], 640h 

text:000124A3 jz short loc 124A7 

text:000124A5 

text:000124A5 loc_124A5: ; : CODE XEEF: sub_12412+88tj 

text:000124A5 xor eax, eax 

text:000124A7 

text:000124A7 loc_124A7: ; CODE XEEF: sub_12412+9ltj 

text:000124A7 Writing to the port starts 

text:000124A7 

text:000124A7 mov esi, ds:V*UTE_PCKT_UCHAR 

text:000124AD test al, al 

text:000124AF jz short loc 124C0 

text:000124B1 mov al, [ebp+var 1C] 

text:000124B4 shr al, 1 

text:000124B6 and al, 1 

text:000124B8 push eax 

text:000124B9 push 432h 

text:000124BE call esi ; ; WRITE BCRT UCHAR 

Thus, in order to allow the driver to send any commands to the IDE drive, you 
must change the conditional jump located by the address 0x12437 (in the listing, it is 

highlighted and surrounded by a rectangle) for the unconditional jump passing the 
control to the write command by the address 0x124 91. After modifying the driver, 
don’t forget to correct its checksum, which can be carried out, for example, using the 
EDITBIN.EXE utility supplied with Microsoft Visual Studio. Otherwise, Windows NT 

will refuse to load the hacked driver. 
Naturally, I recommend that you carry out such an operation only with your own 

driver, because others are unlikely to be pleased by the newly-created security hole. 
Moreover, distribution of the modified version of ATAPI.SYS violates the licensing 
agreement and Microsoft’s copyright. Draw your own conclusions. Nevertheless, your 
application can patch ATAPI.SYS on your own computer and on the computers of 
your users (naturally, you must inform them of the things that you are going to do, 
ask their permission or, at least, mention this aspect in companion documentation). 

This method of interacting with the drive mustn’t be neglected altogether, since 
it significantly complicates the cracking of protection mechanisms based on it. After 

all, not every hacker is well acquainted with specific features related to controlling 
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the miniport. Therefore, with good probability, the vast majority will make fools of 
themselves. 

The example program provided below demonstrates the passing of ATA com¬ 
mands to the IDE drive via the miniport driver. 

Listing 4.23. [/etc/SCSI.mini-port.c] A sample program demonstrating 
the technique of interacting with the SCSI miniport 

int ATAPI_MINIPORT_DEMO(void) 

{ 

int a; 

HANDLE h; 

Char*buf; 

Int LU = 0; 

DWORD returned; 

Int controller; 

CharScsiPort [16]; 

Charbuffer [sizeof (SRB_IO_CONTROL) + SENDIDLENGTH]; 

SRB_I0_C0NTR0L *p = (SRB_IO_CONTROL *) buffer; 

SENDCMDINPARAMS *pin = (SENDCMDINPARAMS *) (buffer + sizeof (SRB_IO_CONTROL)); 

// Testing both IDE controllers in a loop 

for (controller = 0; controller < 2; controller++) 

{ 

// Forming ScsiPort for each controller 

sprintf (ScsiPort, "\\\\.\\Scsi%d:", controller); 

// Opening the required ScsiPort 

h = CreateFile (ScsiPort, GENERIC_READ | GENERIC_WRITE, 

FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, 0) ; 

if (h == INVALID_HANDLE_VALUE) { // EXIT IF ERROR 

printf("-ERR:Unable to open ScsiPort%d\n", controller); 

return -1; 

} 

// Testing both devices on each of the IDE controllers 

for (LU = 0; LU < 2; LU++) 

{ 

// Initializing the input buffer 

memset (buffer, 0, sizeof (buffer)); 

// PREPARING THE SRB IO CONTROL STRUCTURE, 
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} 

// intended for the miniport driver 

p -> Timeout = 10000; // ^feit 

p -> Length = SENDIDLENGTH; // Max. length 

p -> HeaderLength = sizeof (SRB_IO_CONTROL); // Header size 

p -> ControlCode = IOCTL_SCSI_MINIPORT_IDENTIFY; 

// AAA code of the command sent to the driver 

// Signature for ATAPI.SYS - "SCSIDISK" 

strncpy ((char *) p -> Signature, "SCSIDISK", 8); 

// PREPARING THE SENDCMDINPARAMS STRUCTURE, 

// containing ATA commands passed to the IDE drive 

pin -> bDriveNuraber = LU; 

pin -> irDriveRegs.bCommandReg = IDE_ATA_IDENTIFY; 

// SENDING THE REQUEST TO THE MINIPORT DRIVER 

if (DeviceloControl (h, IOCTL_SCSI_MINIPORT, buffer, 

sizeof (SRB_IO_CONTROL) + sizeof (SENDCMDINPARAMS) - 1, 

buffer, sizeof (SRB_IO_CONTROL) + SENDIDLENGTH, 

&returned, 0)) 

if (buffer[98]!=0) 

{// In response, get the string with 

// the identifier of 

// the IDE- drive, which we display on 

// the screen. 

for (a = 98; a < 136; a+=2 ) 

printf("%c%c", buffer[a+1], buffer[a]); 

printf("\n"); 

} 

} 

CloseHandle (h); // Close the descriptor of the given SCSI miniport. 

} 

return 0; 

Communication via Input/Output Ports 
The Windows NT operating system carefully guards Input/Output ports from applica¬ 
tion’s attempts at accessing them. This measure was implemented due to the require¬ 
ments of the chosen security policy. The freedom of applications is intentionally limited 

in such a way as to prevent any attempts at damaging the system or unauthorized access 
to confidential data. The right to access the hardware directly is provided only to drivers 

and DLLs executing in the kernel mode (see "Access via SCSI Miniport"). 
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To paraphrase Benjamin Franklin, a nation that has exchanged essential liberties 
for a little temporary safety deserves neither of these things. Oh yes — as if it were im¬ 
possible to hang the system via SPTI/ASPI! This is even more true when you recall that 
administrative privileges aren’t required for this. In fact, security policy and discre¬ 
tionary access are useless, because ASPI provides access to the disk at the sector level 
without checking if this operation is legitimate. For example, nothing could be simpler 
than infecting the boot sector with a boot virus. At the same time, the lack of access to 
Input/Output ports significantly complicates the task of managing the equipment, not 
to mention the development of reliable and strong protection mechanisms. 

Operating systems of the Windows 9x family behave more democratically, but this 
level of indulgence is applicable only to MS-DOS programs, while Win32 applications 
are deprived of direct access to the ports. 

Nevertheless, it is still possible to control the hardware from the application level. 
There are at least two ways of solving this problem: a) The development of the pass¬ 
through driver implementing more or less transparent interface for communicating with 
ports using the IOCTL mechanism and b) Modifying the I/O Permission Map (IOPM) in 
such a way as to have port access migrate to the list of non-privileged operations that 
can be carried out from the application level. Both methods will be covered in detail. 
Let us start with the interface driver. 

Windows NT DDK includes the rather interesting portio demo driver, which cre¬ 
ates a virtual device and implements a special ioctl interface. Using this interface, 
applications are able to manipulate the ports of this device in any way they like. 
The source code of this demo driver with the required minimum of comments can be 
found in the following directory: \NTDDK\src\general\portio. Clearly, a virtual device 
is not exactly what you need, since the range of its Input/Output ports can’t overlap 
with the ports belonging to other devices, as the system would detect an error and 
warn the user of the hardware conflict in Device Manager. Although such a conflict 
doesn’t influence system usability, users won’t really benefit from viewing conflicting 
devices labeled with the ’’exclamation mark” icon. 

In fact, nothing prevents the kernel-mode driver from accessing any port. To read 
the entire range of ports, it is enough to delete the following lines from the source code 
of the genport.c program. 

Listing 4.24. Checking whether addresses of accessed ports belong to the range 
of virtual device ports created by the driver 

if (nPort >= pLDI->PortCount || 

(nPort + DataBufferSize) > pLDI->PortCount || 

(((ULONG_PTR)pLDI->PortBase + nPort) & (DataBufferSize -1)) != 0) 

{ 
return STATUS_ACCESS_VIOLATION; // Illegal port number 

} 
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It is necessary to pay attention to the fact that the driver expects to receive a rela¬ 

tive port address rather than an absolute one. A relative port address is counted from 
the base port address specified when adding a virtual device to the system. For in¬ 
stance, consider the following listing: 

Listing 4.25. Calculating the actual port address via the base address 

case IOCTL_GPD_READ_PORT_UCHAR: 

*(PUCHAR)pIOBuffer=READ_PORT_UCHAR((PUCHAR)((ULONG_PTR)pLDI->PortBase + nPort)); 

break; 

Obviously, the text highlighted in bold must be deleted. In this case, the driver will 
be able to operate with absolute ports rather than with the relative ones. Consequently, 
this will allow us to access any port in the system! If you port the modified driver to 
Windows 9x, our applications will run in both operating systems and will depend only 
on the hardware. On the other hand, anyone who wants to control these ports must 
understand clearly for what purpose and what difficulties this might generate. 

Naturally, since the possibility of uncontrolled access to all existing Input/Output 
ports significantly weakens the operating system, which is vulnerable even without it, 
it would be wise to introduce some additional checks and limitations in the driver. 
For example, it would be useful to deny direct access to anything that does not repre¬ 
sent a CD-ROM drive. Otherwise, in the event that your program becomes popular 
and widely used, crowds of vandals will rush to write malicious code, such as Trojans. 
Note that the destructive power of these tools would be practically unlimited, and 
it would be very difficult to bring the situation under control. On the other hand, 
during ASPI’s existence, no attempts at using it for destructive purposes have been re¬ 
ported, although the possibility still exists. 

Another drawback in the suggested method of controlling devices is its cata¬ 
strophically low performance. The calls to the DeviceioControl split into thousands 
of machine commands (!), because of which the request-processing time becomes too 
long, while measurements of the physical characteristics of the spiral track (if you 
actually need to measure these characteristics) becomes imprecise. Furthermore, 
the DeviceioControl function is too bulky and ungraceful. The most unpleasant 
thing is that it is very easy to set a Break Point to this function. Therefore, the fate of 
such protection is a foregone conclusion. In the days of MS-DOS, when controlling 
equipment was carried out using the in and OUT machine commands, it was much 
more difficult to locate the protection code in the program body. However, control¬ 
ling devices using these commands was considerably easier, and such communications 
were characterized by significantly higher performance. 

It is assumed that under Windows NT direct access to the ports is possible only at 
the kernel level, while applications must access the ports via the high-level interface 
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provided by a driver. Although this interface can be completely transparent (nothing is 
easier for the driver than to intercept the exception thrown in the course of an attempt 
at reading or writing to the port from the application level, and do it on its own), it is 
still not quite what you need... 

Actually, the in/out commands can also be executed at the application level. 
However, to achieve this, you’ll need to use undocumented features of the operating 
system, as well as documented but little known features of the protected mode imple¬ 
mentation in Intel 80386+ processors. Let us start our discussion with processors. 

Open the "Instruction Set Reference" and view how the out machine command is im¬ 

plemented. Among other useful information, we’ll find its pseudo-code, which ap¬ 
pears approximately as follows: 

Listing 4.26. Pseudo-code of the OUT instruction 

if ((PE == 1) && ((CPL > IOPL) || (VM == 1))) 

{ 

/* Protected mode with CPL > IOPL or virtual-8086 mode */ 

if (Any I/O Permission Bit for I/O port being accessed = 1) 

#GP(0); /* I/O operation is not allowed */ 

else 

DEST <- SRC; /* Writes to the selected I/O port */ 

} 

else 

/* Real Mode or Protected Mode with CPL <= IOPL */ 

DEST <- SRC; /* Writes to the selected I/O port */ 

Attention! Having detected that the privileges of the current level are insufficient 
for the execution of this machine instruction, the processor is in hurry to throw 
out the General Protection Fault exception. On the contrary, it gives this instruction 
another chance by carrying out the check of the state of the I/O permission bitmap. 
If the memory bit corresponding to the current port is not set to 1, the output to this 
port is carried out in spite of any prohibitions from CPL! 

Thus, in order to have access to ports from the application level, it is sufficient to 
correct the I/O permission bitmap, after which the Windows NT security subsystem will 
stop interfering with our work, since the control of access to the ports is carried out at 
the hardware level, rather than at the software level. Consequently, if the processor stops 
throwing out exceptions, the operating system will never know what’s happening! 

The main problem is that the vast majority of the authors of the books on assem¬ 

bler never mention the I/O permission bitmap. Programmers that know about its 
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existence are few. These are mainly individuals who prefer original documentation 
to poor translations and retellings. 

From the "Architecture Software Developer's Manual Volume 1: Basic Architecture", 
you know that the I/O permission bitmap is located in the TSS (Task State Segment). 
To be more precise, its actual offset from the TSS starting point is defined by the 32-bit 
field located in the bytes 0x66 and 0x67 of the Task State Segment. The zero bit of this 
map is responsible for the zero port, the first bit controls the first port, and so on, 
up to the most significant bit — bit 0x2000, which controls port 65535. The bitmap 
is terminated by the so-called terminator byte, which has the value of OxFF. That’s all. 
The ports with their bits set to zero are available from the application level without any 
limitations. Naturally, the I/O permission bitmap is available only to drivers, and not 
to applications. Therefore, it is impossible to proceed any further without writing 
a custom driver. However, this driver will operate only at the stage of its initialization, 
and all subsequent I/O operations will be carried out directly, even if you unload the 
driver from the memory. 

Now for the bad news. In Windows NT, the offset of the I/O permission bitmap by 
default is located beyond the limits of the Task State Segment. Therefore, modifying 
the I/O bitmap is not an easy task, since it is simply missing (there is no such thing). 
The processor reacts to this situation adequately. However, it denies access to the 
Input/Output ports from the application level. 

The Input/Output map actually does exist in the TSS, but it is intentionally dis¬ 
abled by the system in order to prevent applications from behaving in a way that is not 
allowed. The only exception is made for high-performance graphic libraries that access 
Input/Output ports from the application mode. As can be easily guessed, such a trick 
provides Microsoft with a significant advantage over its competitors, since they are 
forced to control the ports either from the kernel level or via the interface provided by 
the video driver. Naturally, both methods are outclassed by direct access to the ports. 

However, attempts to correct the pointer to the Input/Output map don’t produce 
the desired result, since Windows NT stores the copy of this value in the process con¬ 
text. Therefore, the pointer to the previous copy of the I/O map is restored automati¬ 
cally after context switching. On one hand, this is good, because every process can 
have its own I/O map. On the other, Microsoft’s documentation doesn’t contain any 
tips on using this map. 

It is possible, however, to use the trick of increasing the TSS size in such a way as 
to make the I/O map address, which earlier pointed to somewhere beyond the TSS 
limits, reside in the valid and available memory area. Since there are only 0xF55 bytes 
in the tail of the last page occupied by TSS, the maximum size of the map that you can 
create in this gap spans only 31,392 I/O ports. To be honest, other ports are unlikely to 
be necessary. Therefore, this limitation doesn’t cause any serious inconvenience. 

Nevertheless, there are more elegant methods for solving this problem. The efforts 

of Dale Roberts have resulted in the discovery of three completely undocumented 
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functions: Ke38 6SetIoAccessMap(), Ke386QueryIoAccessMap(), and 
Ke3 8 6losetAccessProcess (). As follows from their names, these functions ensure 
a legal method of controlling the I/O map. When I say that these functions are abso¬ 
lutely undocumented, I mean that even header files from the DDK do not contain the 
prototypes for these functions. As a matter of fact, DDK header files list a wide range 

of undocumented functions. Still, the NTOSKRNL library exports them, and these 
functions are easily available from the driver level. 

More detailed information on this topic can be read in the article written by 
their discoverer — Dale Roberts. Here, you will cover them only briefly. So, the 

Ke38 6SetioAccessMap function takes two arguments: a DWORD, which, being set to one, 
makes the function copy the I/O map to the pointer, which is passed to it with the second 
argument. The Ke38 6QueryioAccessMap function accepts the same arguments, but car¬ 
ries out an inverse operation. Namely, it retrieves the current I/O map from the TSS and 
copies it to the specified buffer. Finally, the Ke386ioSetAccessProcess function accepts 
the pointer passed to it with its second argument and pointing to the structure of the 

process received by means of calling on the GetCurrentProcess () documented func¬ 
tion. The first argument plays the same role as the first argument of the previous two 
functions. A zero value moves the pointer to the I/O map outside the limits of the TSS, 

thus denying access to the ports from the application level, while a value of 1 activates 
the I/O map passed earlier. 

The example provided in Listing 4.27 demonstrates the use of these functions. 

Listing 4.27. [/etc/GIVEIO.c] A demo example of the drive opening direct access 
to the I/O ports from the application level 

/*- 
★ 

* This driver allows the execution of the 

* IN/CUT machine command from the application level 

* ______________________ 

★ 

* ATTENTION: I, Chris Kaspersky, have not been involved in the creation of and assume 

* no responsibility for this program! 

* - 
★ 

* GIVEIO. SYS: by Dale Roberts 

* COMPILING: Use the DDK BUILD tools 

* GOAL: Providing access to direct I/O from the user mode 

-*/ 

#include <ntddk.h> 
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/* The name of our device driver */ 

#define DEVICE_NAME_STRING L"giveio" 

// The IOPM structure is simply an array of bytes having the size of 0x2000 

// and containing 8K * 8 bits = 64K bits IOPM, which cover the entire 64 K 

// address space of x86 processors. 

// Each bit set to 0 provides access to the appropriate port 

// to the user-mode process; each bit set to 1 denies access via the respective 

// port. 

#define IOPM_SIZE 0x2000 

typedef UCHAR IOPM[IOPM_SIZE]; 

// The array of zeroes that is copied to the actual IOPM in the TSS by means 

// of calling the dsKe386SetIoAccessbfep () function 

// Required memory is allocated in the course of driver loading 

IOPM *IOPM_local = 0; 

// These are two undocumented functions that we use in order, 

// to provide I/O access to the calling process 

// * Ke386loSetAccessbfep() - copies the passed I/O map to the TSS 

// * Ke386loSetAcoessProcess () - changes the pointer to the IOPM offset, 

// after which the I/O map just copied 

// begins to be used 

void Ke386SetIoAccessMap(int, IOPM *); 

void Ke386QueryIoAccessMap(int, IOPM *); 

void Ke386loSetAccessProcess(PEPROCESS, int); 

// RELEASE ALL EARLIER ALLOCATED OBJECTS 

VOID GiveioUnload(IN PDRIVER_OBJECT DriverObject) 

{ 

UNICODE_STRING uniDOSString; 

WCHAR DOSNameBuffer[] = L"\\DosDevices\\" DEVICE_NAME_STRING; 

if(IOPM_local) MmFreeNonCachedMemory(IOPM_local, sizeof(IOPM)); 

RtlInitUnicodeString(&uniDOSString, DOSNameBuffer); 

IoDeleteSymbolicLink (SuniDOSString); 

IoDeleteDevice(DriverObject->DeviceObject); 

} 

//- 
// Setting IOPM of the calling process in such a way as to 

// provide it with full access to I/O ports. The IOEM_local[] array 
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// contains zeroes, consequently, IOEM will be reset to zero. 

// If CnFlag = 1, the process is provided access to I/O; 

// If this flag is set to 0, access is denied. 

//- 
VOID SetlOPermissionMap(int QnFlag) 

{ 

Ke386loSetAccessProcess(PsGetCurrentProcess(), QnFlag); 

Ke386SetIoAccessMap(1, IOPM_local); 

} 

void GivelO(void) 

{ 

SetlOPermissionMap (1) ; 

} 

//- 
// The handler for processing user-mode call to CreateProcess () . 

// This function is introduced into the function call table using 

// DriverEntry () . When user-mode application calls CreateFile () , 

// this function gets control in the context of the calling application, 

// but with CEL (current privilege level of the processor) set to 0. 

// This allows for the carrying out of operations possible only in kernel mode. 

// GivelO is called for providing the calling process with access to I/O. 

// All that the user-mode application needing access to I/O must do, 

// is open this device using CreateFile () . 

// No other actions are needed. 

//- 
NTSTATUS GiveioCreateDispatch(IN PDEVICE_OBJECT DeviceObject,IN PIRP Irp) 

{ 

GivelOO; // give the calling process I/O access 

Irp->IoStatus.Information = 0; 

Irp->IoStatus.Status = STATUS_SUCCESS; 

IoCompleteRequest(Irp, IO_NO_INCREMENT); return STATUS_SUCCESS; 

} 

//- 
// The driver entry procedure. This procedure is called only once after 

// loading the driver into the memory. It allocates the resources required 

// for driver operation. In our case, it allocates the memory for the IOEM array 

// and creates the device that can be opened by the user-mode application. 

// This function also creates a symbolic link to the device driver. 
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// This allows the user-mode application to access our driver 

// using the \\.\giveio notation. 

//- 
NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath) 

{ 

NTSTATUS status; 

PDEVICE_OBJECT deviceObj ect; 

UNICODE_STRING uniNameString, uniDOSString; 

WCHAR NameBuffer[] = L"\\Device\\" DEVICE_NAME_STRING; 

WCHAR DOSNameBuffer[] = L"\\DosDevices\\" DEVICE_NAME_STRING; 

// Allocating the buffer for local IOEM and setting it to zero 

IOPM_local = MmAllocateNonCachedMemory(sizeof(IOPM)); 

if(IOPM_local == 0) return STATUS_INSUFFICIENT_RESOURCES; 

RtlZeroMemory(IOPM_local, sizeof(IOPM)); 

// Initializing the device driver and device object 

RtlInitUnicodeString(&uniNameString, NameBuffer); 

RtlInitUnicodeString(&uniDOSString, DOSNameBuffer); 

status = IoCreateDevice(DriverObject, 0, SuniNameString, FILE_DEVICE_UNKNOWN, 

0, FALSE, SdeviceObject); 

if(!NT_SUCCESS(status)) return status; 

status = IoCreateSymbolicLink (SuniDOSString, SuniNameString); 

if (!NT_SUCCESS(status)) return status; 

// Initializing driver entry points in the driver object 

// All that we need are Create and Unload operations 

DriverObj ect->Maj orFunction[IRP_MJ_CREATE] = GiveioCreateDispatch; 

DriverObject->DriverUnload = GiveioUnload; 

} 

return STATUS SUCCESS; 

Listing 4.28. [/etc/GIVEIO.demo.c] An example of input/output to the port from 
the application level 

/*- 
★ 

* Demonstration of the in/out call at the application level 

* (ATTENTION: The GIVEIO.SYS driver must be previously loaded.) 

* ============================== 
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★ 

* ATTENTION: I, Chris Kaspersky, have not been involved in the creation of and assume 

* no responsibility for this program! 

* - 
★ 

* GIVEIO.TST: by Dale Roberts 

* GOAL: Testing the GIVEIO driver by carrying out some I/O operation 

* (for example, accessing the internal PC speaker) 

#include <stdio.h> 

#include <windows.h> 

#include <math.h> 

#include <conio.h> 

*/ 

typedef struct { 

short int pitch; 

short int duration; 

} NOTE; 

// NOTES TABLE 

NOTE notes[] = {{14, 500}, {16, 500}, {12, 500}, {0, 500}, {7, 1000}}; 

// SETTING THE SPEAKER FREQUENCY IN HZ 

// THE SPEAKER IS CONTROLLED BY THE INTEL 8253/8254 TIMER WITH 0X40-0X43 I/O PORTS 

void setfreq(int hz) 

{ 

hz = 1193180 / hz; // Speaker base frequency 1.19MHz 

_outp(0x43, 0xb6) ; // Choosing timer 2, write operation, mode 3 

_outp(0x42, hz) ; // Setting frequency divider 

_outp(0x42, hz » 8); // Most significant bit of the divider 

} 

//- 
// Note that duration is specified in fractions of the 400 Hz frequency, the number 12 

// specifies the scale. The speaker is controlled via port 0x61. Setting two 

// least significant bits allows channel 2 of the 8253/8254 timer 

// and activates the speaker. 

//- 
void playnote(NOTE note) 

{ 

_outp(0x61, _inp(0x61) | 0x03); // Activating the speaker 

setfreq((int)(400 * pow(2, note.pitch / 12.0))); Sleep(note.duration); 

_outp(0x61, _inp(0x61) & ~0x03) ; // Deactivating the speaker 
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} 

//- 
// Opening and closing the GIVEIO device, which gives us direct access to I/O; 

// then trying to play music 

//- 
int main() 

{ 

int i ; 

HANDLE h; 

h = CreateFile("\\\\.Wgiveio", GENERIC_READ, 0, NULL, OPEN_EXISTING, 

FILE_ATTRIBUTE_NORMAL, NULL); 

if(h = INVALID_HANDLE_VALUE) 

{ 

printf("Couldn't access giveio device\n"); return -1; 

} 

CloseHandle(h); 

for(i =0; i < sizeof(notes)/sizeof(int); ++i) piaynote(notes[i]); 

Now let us discuss how this method of accessing I/O ports can be used for the 
benefit of protection mechanisms. Suppose that our protection is based on the pres¬ 
ence of a physical defect of the CD surface. In this case, all you need to do is to make 
reading this sector remain as unnoticeable as possible: if this sector is actually is un¬ 
readable, then you are dealing with an original disc. Otherwise, this disc is an illegal 
copy. Direct control over I/O ports will not be picked up with close to 100 percent 
probability. This is true even if you are dealing with experienced hackers. They are 
simply unlikely to guess such a ruse. The only thing that you should care about is pre¬ 
venting them from detecting the protection code by cross-references left by the error 
message that is displayed on the screen in the event that the disc in question is consid¬ 
ered to be illegal. 

Nevertheless, qualified hackers won’t swallow this kind of bait. With a malicious 
grin, they will just set a breakpoint to the Input/Output operations to the ports 
0xlF7/0x177 (for Primary and Secondary drives, respectively). To avoid drowning in 
the mess of API calls to the drive, they will use conditional breakpoints, instructing the 
debugger to show up only in case when the address of machine command that carries 
out I/O operation is below 0x70000000 (i.e. that it belongs to the application rather 
than to the kernel). 
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However, is there anything that prevents us from executing the I/O command 
using the address belonging to the kernel from the application level? To do so, it is 
enough to scan the upper half of the address space for the presence of the following 
commands: out dx, al (OxEE opcode) and in al, dx (OxEC opcode). The question 
can be asked: How are you going to return the control? The answer to this question is 

straightforward — this can be carried out by means of handling structural 
exceptions. If the machine command that follows in/out throws out an exception (by 
the way, such commands are a numerous), then by catching this exception and han¬ 

dling it, you can continue program execution as if nothing happened. 
The advantage of this technique is that the breakpoint set by the hacker to the 

Input/Output ports won’t work (to be more precise, it will actually work, but it will be 

immediately "swallowed” by the filter). The drawback of this approach is the compli¬ 
cation of the protection mechanism. 

Access via the MSCDEX Driver 

The famous MSCDEX, created in the days of MS-DOS glory, provided the required 
functional capabilities to programmers, despite its multiple drawbacks. It ensured with 
a sufficient level of comprehensiveness all of the capabilities of the drives that existed 
at that time. For example, the reading of individual sectors was carried out by the 
I508h function of the int 2Fh interrupt. If it was necessary to go to the raw level, it was 
always possible to ask MSCDEX to pass the ATAPI packet directly. This task was ac¬ 
complished by the I5l0h function of the same interrupt (see the Interrupt List by Ralf 

Brown, if you need more detailed information). 
Curiously enough, the functional capabilities of the newer OS, Windows 9x, are 

incomparably weaker. For instance, under this more powerful OS, it is rather prob¬ 
lematic to go down to the sector level without encountering a large number of prob¬ 
lems. To all appearances, the system architects have decided that the sector level is 
something unneeded and, furthermore, system-dependent. Therefore, according to 
their point of view, "proper” applications must be developed as fully portable, and 
must use only standard Win32 API calls — all other calls are illegal. 

Meanwhile, to support backward compatibility with programs written for 
MS-DOS and Windows 3.1, the Windows 95 operating system supports MSCDEX in¬ 
terface. As a result of performance considerations, this interface isn’t implemented in 
"native" MSCDEX, which could be missing on the disk. Rather, these functions are 

implemented in a CD-ROM driver that executes in 32-bit protected mode. This means 
that all of the required functionality is present in the system. Consequently, there re¬ 
mains a hope to get hands over it in some way or another. Naturally, this problem can 
be easily solved at the kernel level, but writing a custom driver just to provide an 
interface to the existing one is very inefficient. 
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Fortunately, there is a documented and ready-to-use interface between Win32 ap¬ 

plications and the MSCDEX driver in Windows 9x. Unfortunately, it is awkwardly im¬ 
plemented. In general, because the MSCDEX interface is callable only in V86-mode, 
Win32 applications must thunk to a 16-bit DLL, and the 16-bit DLL must use the DOS 
Protected Mode Interface (DPMI) Simulate Real Mode Interrupt function to call its 
functions. 

NOTE 

DPMI (DOS Protected Mode Interface) is the interface designed specially to enable 
developers of protected-mode MS-DOS applications to use the functions of 16-bit 
operating system such as MS-DOS itself. 

Particularly, you are interested in the 1508h function — DPMI Simulate Real Mode 
Interrupt, which allows for the calling of real-mode interrupts from the protected 
mode. By calling the emulator of the MSCDEX driver via its native INT 2Fh interrupt, 
you can do whatever you like with the drive, since the MSCDEX interface, as was have 
mentioned before, is very powerful. 

Thus, you can predict the following programming route: Win32 application — 
16-bit DLL — DMPI Simulate RM Interrupt — MSCDEX — CDFS. Isn’t it too bulky? 
Or isn’t it better to use ASPI (because it is present in Windows 95) or undertake the 
development of a custom driver? Nevertheless, even if you are not planning to control 
the drive via MSCDEX, it is useful to know about the existence of such a method to 
communicate with hardware, especially if you plan to crack someone else’s programs. 
In this case, setting breakpoints to API functions won’t produce anything, because 
reading sectors is carried out via INT 31h (DMPI) and INT 2Fh interrupts. Unfortu¬ 
nately, setting breakpoints directly to these interrupts results in a large number of gar¬ 
bage debugger popups. Using filters is unlikely to be efficient because the number of 
possible variations is too large. It would be much better to search for interrupt calls in 
the disassembled program listing! 

Additional information on this topic can be found in the Q137813 article included 
in the MSDN documentation supplied along with Microsoft Visual Studio. The title of 
this article is "How Win32 Applications Can Read CD-ROM Sectors in Windows 95". 
A complete listing of DMPI- and MSCDEX-functions can be found in the Interrupt- 
List composed by Ralf Brown. Thus, you shouldn’t encounter any difficulties when 
using this technique. (Although, it is rather difficult nowadays to find a compiler ca¬ 
pable of generating 16-bit code and linker for Windows 3.1! By the way, Microsoft 
Visual Studio 6.0 is not suitable for this purpose any more, since beginning with one of its 
earlier versions, it lacks the capability for creating projects for MS-DOS/Windows 3.1.) 

Provided below is a key fragment quoted from MSDN. This example illustrates 
the technique for calling real-mode interrupts from 16-bit DLL executed in the Win¬ 
dows environment. 
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Listing 4.29. A key fragment of a program illustrating the technique for commu¬ 
nicating with the MSCDEX driver from 16-bit DLL executed in Windows 

BOOL FAR PASCAL MSCDEX_ReadSector(BYTE bDrive, DWORD StartSector, LPBYTE RMlpBuffer) 

{ 

RMCScallStruct; 

BOOL fResult; 

// Prepare DPMI Simulate Real Mode Interrupt call structure with 

// the register values used to make the MSCDEX Absolute read call. 

// Then, call MSCDEX using DPMI and check for errors in both the DPMI call 

// and the MSCDEX call. 

BuildRMCS (ScallStruct); 

callStruct.eax = 0x1508; 

callStruct.ebx = LOWORD(RMlpBuffer); 

callStruct.es = HIWORD(RMlpBuffer); 

callStruct.ecx = bDrive; 

callStruct.edx = 1; 

callStruct.esi = HIWORD(StartSector) ; 

callStruct.edi = LOWORD(StartSector); 

// Calling the real-mode interrupt 

if (fResult = SimulateRM_Int (0x2F, scallStruct)) 

fResult = !(callStruct.wFlags & CARRY_FLAG); 

return fResult; 

} 

BOOL FAR PASCAL SimulateRM_Int(BYTE blntNum, LPRMCS lpCallStruct) 

{ 

BOOL fRetVal = FALSE; // Assume failure 

// MSCDEX "ABSOLUTE READ" function 

// Buffer offset for reading a sector 

// Buffer segment for reading a sector 

// Drive letter 0=A, 1=B, 2=C, etc. 

// Read one sector 

// Number of the sector to be read 

// (most significant word) 

// Number of the sector to be read 

// (least significant word) 

_asm 

{ 

push di ; Saving the DI register 

mov ax, 0300h ; DPMI Simulate Real Mode Interrupt 

mov bl, blntNum ; Number of the real-mode interrupt for the call 

mov bh, Olh ; Bit 0=1; all other bits must be set to zero 

xor cx, cx ; Do not copy anything from the PM stack to RM stack 

les di, lpCallStruct ; Pointer to the structure with registers values 

int 31h ; Gateway to DMPI 
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jc ENDl ; If error, jump to ENDl. 

mov fRetVal, TRUE ; Everything’s OK. 

ENDl: 

pop di ; Restoring the DI register 

} 

// Return 

return (fRetVal); 

} 

Communicating via the Custom Driver 
Although Windows also allows for the controlling of devices from the application 
level, most developers prefer to carry out such control using a custom driver capable 
of interacting with the drive both directly and via its driver. The latter method is pref¬ 
erable, since it allows for abstracting from specific equipment and ensures a unified in¬ 
terface for all drives. Most drivers of this type "connect" to AT API and/or SCSI ports and 
interact with the disk in a way similar to the ASPI driver that you have considered before. 

Communication with applications is usually carried out by means of special 
ioctl codes passed to the driver by the DeviceioControl function. These ioctl codes 
are labelled "special", since the development of the protocol for organizing interaction 
between the driver and device is entirely on the conscience (and in the fantasies) of the 
developer of that specific driver. There is no such thing as standardization here! 
Furthermore, the DeviceioControl function is not the only possible variant. Execut¬ 
ing in ring 0 formally provides the right to access all resources of the operating system. 
If desired, even the most unimaginable perversions are possible. For example, it is 
possible to communicate with the application via the common memory area. 
In this case, breakpoints set on DeviceioControl won’t produce any result. However, 
the overwhelming majority of drivers operate via ioctl and are not distinguished by 
original ideas. In some way, this position is justified. Actually, the more non-standard 
features are implemented in the driver, the higher is the probability of conflicts, and 
the lower its compatibility with other programs (including operating systems). 
Moreover, a sophisticated driver is much more difficult to debug and bring to perfec¬ 
tion than a simple one. On the other hand, however, an unsophisticated driver is very 
easy to crack, and, therefore, the efforts spent on its development are not justified. 
In this case, it is much more reasonable to use ASPI, which ensures fully functional 
low-level interface, which is also system-independent. When using this approach, you 
won’t have to create implementations of your driver intended for all existing operating 
systems and end up involved in feverish activity related to rewriting the code with 
the release of each new Windows version. 
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Summary Table of Characteristics of Various Interfaces 
The summary table provided below shows the main characteristics of all of the meth¬ 
ods of access described above. As can be seen from this table, the best results are pro¬ 
duced by the method of access via ASPI, which ensures an easy, convenient, and sys¬ 
tem-independent interface for controlling storage media. The next most-positive 
result is produced by STPI. The main drawback of this method lies in that it is sup¬ 
ported only by operating systems of the Windows NT family and doesn’t work on 
Windows 9x. The development of a custom driver looks like a good idea. Implement¬ 
ing such a driver for both Windows NT and Windows 9x (by the way, WDM drivers 
at the source code level ensure compatibility) will ensure support for your application 
under both operating systems. 

Table 4.6. The comparison of different methods of access (undesired 
characteristics are highlighted) 

Here and further on, "id" means "implementation-dependent". 

** Driver installation requires administrative privileges on the local computer; however, its subse¬ 
quent use doesn't. 



Chapter 5: Methods 
of Revealing Protection 
Mechanisms 

Can God create such a stone that he would be un¬ 
able to lift, it is a question that can’t be answered 

by science. Programmers, however, can easily find 

such a thing that they can’t debug. 

Programmers' folklore 

Protection requiring low-level access to the CD will inevitably give itself away by 

the presence of functions such as DeviceloControl and/or SendASPl32Command 

in the import table. If protection mechanism loads these functions dynamically, this 

can be revealed by setting breakpoints to the LoadLibrary/GetProcAddress functions 
(however, experienced programmers can search for the required functions in the 
memory, — this task is not as complicated as it seems). 

Furthermore, the program body might contain strings such as: "scsi", 
"cdRom", "wnaspi32.dll", etc. By setting a breakpoint on the first byte of the string, we 
will be able immediately to locate the protection code as soon as it is called for the first 
time. To avoid this, developers often encrypt all text strings. However, most of them 
usually limit themselves to primitive static encryption (which usually is carried out by 
ASPack or other similar programs). Therefore, if we wait until decryption is completed 

and call the debugger after starting the program, instead of doing so before it, all text 



212 Part II: Low-Level Control over Hardware 

strings will be displayed in plain text! Dynamic encryption is much more reliable. 
In this case, text strings are decrypted directly before passing them to the appropriate 
API function, after which they are encrypted again. However, if desired, it is also pos¬ 
sible to overcome dynamic encryption! To achieve this, it is enough to set a condi¬ 

tional breakpoint on the CreateFile function to which these text strings are passed, 
popping up only in the event that the first four bytes of the filename are equal 

to M\\. \M. An example of such a call would look as follows: 

bpx CreateFileA if (*esp->4==T\\\\.\\T) 

after which it remains only to enjoy the results. 

Naturally, the "results" as we understand them include, first, the name of the file to 
be opened, or, to be more precise, the driver name (this is a result in itself), and, sec¬ 
ond, the descriptor returned by the CreateFile function. To proceed further, it is 
possible to choose one of the following two approaches: Either set the breakpoint 
at the memory cell, in which this descriptor is saved, or set a conditional breakpoint 
to the DeviceioControl, catching only those calls to it that are necessary for us. 

An example of a debugger session is provided in Listing 5.1. 

Listing 5.1. An example illustrating the determination of the protection 
mechanism using Soft-Ice 

:bpx CreateFileA if (*esp->4=='\\\\.\\') (setting a breakpoint) 

:x (exiting the debugger) 

(Debugger pauses for a moment, and then pops up at the moment of call to CreateFileA.) 

: P RET (exit CreateFileA) 

:? eax (get the descriptor value) 

00000030 0000000048 ”0” (response from debugger) 

:DeviceIoControlA if (*esp->4==0x30) (setting the breakpoint to DeviceloCntrol) 

(after a pause, the debugger pops up at the moment of call to DeviceioControl) 

: P RET 

: U 

001B:00401112 lea ecx, [ebp-38] 

001B:00401115 push ecx ; 

001B:00401116 push 0004D004 ; Here it is 

001B:0040111B mov edx, [ebp-OC] 

001B:0040111E push edx 

001B:0040111F call [KERNEL32!DeviceioControl] 

(exit DeviceioControl) 

(That's all. The protection is detected!) 

Here it is, IOCTL SCSI PASS THROUGH DIRECT! 

As can be seen, the search for DeviceioControl didn’t take long. It only remains 

now to analyze the ioctl code passed to it (in our example, this is ioctl_scsi_pass_ 

throught_direct) and its parameters passed via the stack one double word higher. 
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Some developers place the critical part of the protection code in the driver, hoping 
that hackers won’t find it there. Vain and naive hope! Drivers are very easy to analyze 
because of their small size. Consequently, there is no place in a driver to hide the pro¬ 
tection code. However, if you "dissipate” the protection code by several megabytes of 
the application code, the analysis will take a horribly long time. Thus, if hackers have no 
special interest in cracking that protection, they are better off purchasing a legal copy rather 

than spending several weeks jumping from disassembler to debugger and vice versa. 
What tricks are used by developers to complicate driver analysis? One method is to 

encrypt the text string with the symbolic name of the device created by the driver at the 
time of loading. As a result, the hacker knows for sure that the protection code opens the 
device ”\\. \MyGoodDriver”, but can’t determine quickly to which driver this name cor¬ 

responds. In the case that there is no encryption, the problem is solved easily by a trivial 
context search. For example, let’s assume that we need to know which driver creates 
the device with the name MbMmDp32. Open the WINNT\System32\Drivers folder with 

Far Manager, press <ALT-F7>, and enter the name of the string to be searched for: 

”MbMmDp32”. Do not forget to select the Use all installed character tables checkbox 

(otherwise, nothing will be found, since the string must be specified in Unicode). After 
some disk activity, Far Manager will produce the only correct answer: aspi32.sys. 

This is the driver that we need! Now imaging that string containing the name is en¬ 

crypted... If the driver is loaded dynamically, the situation is not too bad. Simply set 
the breakpoint to the ioCreateDevice and wait until the debugger pops up. Then, 

issue the p ret command and search the map of loaded modules (displayed by the 
mod command) to find what can be discovered in this memory region. Drivers that 
load during the OS boot are significantly more difficult to overcome. Quite often, you 

will have to search for the required driver by means of trial and error. The date of file 
creation can often help in this search — the driver installed by the protected applica¬ 
tion must bear the same data of creation as all of its other files. However, the protec¬ 
tion mechanism can freely manipulate the creation data at its discretion, so this tech¬ 
nique is not reliable. A positive result can be produced by comparing the contents of 

the WINNT\System32\Drivers directory before and after installation of the protected applica¬ 
tion. Clearly, the protection can only be hidden among one of the newly installed drivers. 

CD Burning: Pros, Cons, 
and Something about 

To protect CDs from copying, it is not necessary to undertake the development of 

a custom CD-burning program. Instead of this, you can work with "raw” disc images 
supported by Alcohol or Clone CD. Despite the fact that all of these programs impose 
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certain limitations on the images they create, the development of high-quality protec¬ 
tion mechanisms is still possible. In other words, these programs easily burn the things 
that they are unable to copy on their own! 

When creating a custom copying program for protected discs, it is possible to do 
this without the burning functionality — it is enough to prepare the disc image 
(i.e., correctly read the protected disc). Mass-production of the hacked image doesn’t 
present any problem. Thus, it is better to focus directly on the analysis of protected 
discs rather than to reinvent the wheel, so to speak, developing once again things that 
were invented long ago. Alcohol and Clone CD have excellent burning capabilities. 
However, the reading engine of these programs is obviously weak, so that even minor 
distortions of the control structures of the CD are able to confuse them. 

If, despite all of this, you are still convinced that you need a custom program like 
Nero CD-ROM Burner, there is an answer! Make a call to Maxwell’s daemon1, where it 
is easier to fall into its clutches than to escape (just kidding). The biggest problem, 
however, lies in technique of CD burning, and even a brief overview of it would re¬ 
quire a separate book. Having only the standards and specifications for SCSI com¬ 
mands will be insufficient, since they don’t clarify many details of the process for gen¬ 
erating various data structures required by the drive for correctly burning the source 
image onto a CD. In my opinion, the best manual on CD burning is the "Functional 
Requirements for CD-R (Informative)” supplement to the ’’SCSI-3 Multimedia 

Commands” document, a version of which can be downloaded from: http://www.tlO.org/ 

ftp/tlO/drafts/mmc/mmc-rlOa.pdf (note that in later revisions of this document, this 
supplement was removed). 

It would also be useful to analyze the source code of the CDRTOOLS utility, 

which can be found on the site: http://prdownloads.sourceforge.net/cdromtool/ 

cdromtool_2002-ll-26.zip?download. Of course, a little more than seven megabytes 
of source code is rather appalling than appealing prospect. However, I do not know 
simpler programs. 

A more laborious (but, at the same time, more tempting) method is disassembling 
executable files of the Alcohol, Clone CD, CDRWin, and other programs, including 
the monstrous Nero. It is not actually necessary to carry out complete disassembling. 
It is sufficient to intercept SCSI commands passed to the drive and analyze the se¬ 
quence of their calls, without forgetting about the values of arguments, which, in fact, 
contain all of the key data structures. 

Depending on the method chosen by the developer of an application intended 
for communicating with the device, espionage is carried out either by intercepting 
the DeviceioControi function with the arguments ioctl_scsi_pass_through/ 

1 An imaginary creature who is able to sort hot molecules from cold molecules without expending 
energy, thus bringing about a general decrease in entropy and violating the second law of thermo¬ 
dynamics. After James Clerk Maxwell. 
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IOCTL_SCSI_PASS_THROUGH_DIRECT (4D004h/4D014h), or the SendASPI32Coramand 

function for SPTI and ASPI interfaces, respectively. Applications interacting with the 
drive via a custom driver can also be intercepted. However, there are no universal so¬ 
lutions here and each specific case must be considered individually. 

Let’s look at the Alcohol copier for detecting the algorithms of clearing and burn¬ 
ing CD-RW discs (CD-R is burned in a similar way, but doesn’t require clearing, for 

obvious reasons). Start Alcohol, go to Alcohol copier and then to the Settings tab, 

click on the General link, and choose the WinASPI Layer Interface (safe mode) op¬ 

tion in the Disk management interface drop-down list (if it was not chosen before). 
After changing the interface, the program must be restarted. Exit the program and 
start it again to make sure that it is usable. 

Now, start soft-ice (or any other debugger supporting breakpoints on API func¬ 
tions) and, having previously loaded ASPI export (NuMega Symbol Loader -> File -> 

Load Exports -> wnaspi32.dll), open the Alcohol.exe process, unpacking it if neces¬ 
sary (as a rule, it is packed with UPX). 

Now, try to set the breakpoint on SendASPi32Command, giving the following com¬ 
mand to the debugger: bpx sendASPi32Command. However, nothing useful will come 
of this. Soft-Ice will complain that it can’t find such a function, despite the fact that its 
name is spelled correctly. This is not surprising, if we suppose that wnaspi32.dll is 
loaded dynamically in the course of program execution, and the address of ASPI func¬ 
tions are unknown at the stage of loading Alcohol.exe. 

It is possible to set the breakpoint on LoadLibraryA, tracking the process of load¬ 
ing of all DLLs. However, since Alcohol loads an enormous number of various DLLs, 
the debugging session will take a long time, during which we have to watch the screen 
and endure the monotonous activity of pressing <CTRL-D> repeatedly. A more ad¬ 
vanced monitoring approach is setting a conditional breakpoint that will automatically 
discard all obviously false calls. The command corresponding to it might look, for ex¬ 
ample, as follows: bpx LoadLibraryA if *(esp->4) == "SANW11, where sanw are 
the first two characters of the wnaspi32. dll name written in inverse order, with the ac¬ 
count of the case chosen by the program developer (if you do not know this before¬ 
hand, it is possible to use the case-insensitive comparison function). 

The bpx GetProcAddress command will then allow all of the ASPI functions 
to be intercepted, including sendASPi32Command. The name of the loaded function 
can be viewed by means of issuing the d esp -> 4 command. Having waited until 
the sendASPi32Coramand appears, dick P ret and, having set the breakpoint to bpx eax, 

press <Ctrl>+<D> to exit Soft-Ice (all the other breakpoints can be deleted if desired). 
When the debugger pops up, issue the ”d esp -> 4” command, and the contents 

of the SRB_ExecSCSiCmd structure will appear in the memory dump window. Now the 
byte number 30h will be the first byte of the CDB (Attention: This is the first byte of 
the packet, rather than the pointer to the packet itself); bytes 03h and lOh are the data 
direction flags and pointer to the clipboard, respectively. 
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Provided below are examples of spy protocols intercepted in the course of clearing 
and burning CD-RW. 

Listing 5.2. The contents of intercepted CDB blocks sent by Alcohol to 
the device in the course of fast clearing of the disc 

IE 00 00 00 01 00 PREVENT REMOVAL (ON) -+ 

51 00 00 00 00 00 READ DISK INFORMATION-+ | 

IE 00 00 00 00 00 PREVENT REMOVAL (OFF) -|-+ 

BB 00 FF FF FF FF SET SPEED-+ | | 

5A 00 2A 00 00 00 MODE SENSE -+ | | | 

BB 00 FF FF 02 C2 -| + | | 

5A 00 2A 00 00 00 -+ I | 

IE 00 00 00 00 00 -| + 

51 00 00 00 00 00 -+ 

A1 11 00 00 00 00 BLANK 

Pay special attention to the fact that, for clearing the disc, Alcohol uses the blank 

SCSI command, a detailed description of which can be found in the ’’Multimedia 
Commands — 4” and ’’Information Specification for AT API DVD Devices ” documents. 

Let’s continue our activity in the field of espionage by tracing the process of CD 
burning. The sequence of SCSI commands sent to the device will appear as follows: 

Listing 5.3. The contents of intercepted CDB blocks sent by Alcohol to 
the device in the course of CD burning 

Choosing ’’burn” from the menu 

BB 00 FF FF FF FF SET SPEED 

5A 00 2A 00 00 00 MODE SENSE 

AC 00 00 00 00 52 GET PERFORMANCE 

’’Write” dialog appears 

IE 00 00 00 00 01 

51 00 00 00 00 00 

IE 00 00 00 00 00 

PREVENT REMOVAL (LOCK) 

READ DISK INFORMATION 

PREVENT REMOVAL (UNLOCK) 

CD burning in progress 

43 02 04 00 00 00 READ ATIP 

51 00 00 00 00 00 READ DISK INFORMATION 

52 00 00 00 00 00 READ TRACK/ZONE INFORMATION 
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5A 00 05 00 00 00 MODE SENSE 

55 10 00 00 00 00 MODE SELECT 

51 00 00 00 00 00 READ DISK INFORMATION 

2A 00 FF FF D2 AC WRITE(10) -+ 

2A 00 00 00 D2 BC - write Lead-In 

2A 00 00 00 D2 CC 
1 

2A 00 00 00 65 B3 WRITE(10) -+ 

2A 00 00 00 65 CD - write track 

2A 00 00 00 65 E7 -+ 

To conclude, let us mention the list of SCSI commands directly related to 
CD burning and recommended for future careful investigation: blank, close 

TRACK/SESSION, FORMAT UNIT, READ BUFFER CAPACITY, READ DISC INFORMATION, READ 

MASTER CUE, READ TRACK INFORMATION, REPAIR TRACK, RESERVE TRACK, SEND CUE 

SHEET, SEND OPC INFORMATION, SYNCHRONIZE CACHE, WRITE (10). All of the above- 
listed commands relate to the MMC-1 standard and, therefore, are easy to understand. 

The text of the standard can be downloaded from the site: http://www.tlO.org/ftp/tlO/ 

drafts/mmc/ mmc-r 1 Oa.pdf. 

Locking and Unlocking the EJECT Button 
If the application interacting with the CD carries out an operation that must not be 
interrupted under any circumstances, it is possible to use the ioctl command for 
blocking the tray ioctl_cdrom_media_removal (0x24804). In this case, any attempt to 
eject the disc from my PHILIPS CDRW triggers malicious blinking of the red LED, 
showing that the disc is "IN", but locked. The disc cannot be ejected until the tray is 
unlocked by the pin or by means of rebooting the system. 

This circumstance alone creates a rich set of possibilities for numerous intruders 
or for simply incorrectly operating programs that can fall slain by a crucial fault before 
unlocking the media. Is it possible to overcome the situation? It’s easy. lust unlock 
the tray on your own! 

The point is that the system does not require the unlocking procedure to be car¬ 
ried out in the context of the process that has carried out the blocking. It simply 
counts the locks and, if the counter is equal to zero, then the tray is free. Consequently, 
if the block counter is equal to six, we must give the unlocking command six times 
before the CD can be ejected. 

The utility (the source code of which is provided in Listing 5.4) allows us to ma¬ 
nipulate the block counter according to our needs. The "+" command line argument 
increases the counter by one, while "-" carries out an inverse operation. When the 
counter value reaches 0, any attempts of decreasing it will bring no result. 
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How can we use this? Suppose, for example, that the untimely ejection of the disc 
has occurred before the burning operation has been accomplished, which is certainly 
useful for experimentation. Another application is as follows: When leaving your 
computer for several minutes, you can lock the disc to make sure that no one takes it 
away. If someone still manages to do this (by rebooting the computer), lock the trays 
of their CD-ROM drives and make them reboot! 

Listing 5.4. The [/etc/CD.Iock.c] Utility for locking/unlocking the CD-ROM tray 

/*- 

LOCKS AND UNLOCKS THE CD-ROM TRAY 

* build 0x001 @ 04.06.2003 

-*/ 

#include <windows.h> 

#include <winioctl.h> 

#include <stdio.h> 

#define IOCTL_CDROM_MEDIA_REMOVAL 0x24804 

main(int argc, char **argv) 

BOOL 

DWORD 

HANDLE 

PREVENT MEDIA REMOVAL 

act; 

xxxx; 

hCD; 

pmrLoc kCDROM; 

// CHECKING ARGUMENTS 

if (argc<3) {printf(’’USAGE: CD.lock.exe \\\\.\\X: {+,-}\n’’); return -1;} 

if (argv[2][0]==’+’) act=TRUE; // INCREMENT THE LOCK COUNTER 

else if (argv[2][0]=='-') act=FALSE; // DECREMENT THE LOCK COUNTER 

else {printf(stderr, ”-ERR: in arg %c\n”, argv[2][0]); return -1;} 

// GET THE DEVICE DESCRIPTOR 

hCD=CreateFile (argv [1] , GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, 0,0); 

if (hCD == INVALID_HANDLE_VALUE) {printf(”-ERR: get CD-ROM\n”); return -1;} 

} 

// LOCK OR UNLOCK THE CD-ROM TRAY 

pmrLockCDROM.PreventMediaRemoval = act; 

DeviceloControl (hCD, IOCTL_CDROM_MEDIA_REMOVAL, 

&pmrLockCDROM, sizeof(pmrLockCDROM), NULL, 0, Sxxxx, NULL); 
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Hacking Secrets. Brake Fluid for CDs 
The arrival of high-speed CD-ROM drives has resulted in a large number of problems. 
The popular opinion is that the cons far outnumber the pros. The list of drawbacks in¬ 
cludes terrible noise, vibration, and broken discs. Who needs it? Besides, many algo¬ 

rithms for binding to CD feel somewhat uncertain at high speeds. Hence, protected 
discs do not start on the first attempt, if they ever start at all. What can we do about 
this? Naturally, we just slow them down! Fortunately, most drives support the set cd 

speed (opcode OBBh) command. At first glance, there is no problem at all — just spec¬ 
ify the required parameters. However, things are not as simple as they seem. 

The first nuisance (minor, but still annoying) is that the speed is specified in KB 
per second, rather than in ”x” (note that the measurement unit is KB rather than 
bytes). At the same time, single speed corresponds to a throughput of 176 KB per sec¬ 

ond. What about double speed? If you deduce that it will be 352 (2 x 176), you are 

mistaken. The speed is actually 353! Triple speed does equal what we would expect: 
176 x 3 = 528. However, 4x speed once again deviates from what would seem logical, 
being 706 rather than 704 (4 x 176). An incorrectly specified speed will result in the 

setting of the speed one grade lower than expected, and the correspondence between 
the grades and stages will be ambiguous. Suppose that the drive supports the following 

range of speeds: 16x, 24x, 32x, and 40x. If the specified speed (in kilobytes per second) 
is lower than the nominal 32x speed, the drive will operate at the next lower supported 
speed, 16x in our case. Hence, to translate the "x" into kilobytes per second, they must 
be multiplied by 177 rather than by 176! 

The second nuisance (much more significant and considerably more frustrating) is 
that the standard specification does not contain a command producing the complete 
list of supported speeds. This information must be obtained by means of trial and er¬ 
ror. Before starting the trial, a properly operating program must make sure that there 
is no disc in the drive. If there is, it must forcibly eject it. As a matter of fact, running 
a low-quality disc at high speeds might result in the disc exploding, rendering the drive 
unusable. The user must be absolutely sure that the disc inserted into the drive will 

rotate at exactly the speed that is requested, and that the program won’t increase the 
rotation speed without justification. 

The third nuisance (of a horrifying nature this time) is that some drives (TEAC 

522E, for instance) successfully swallow the set cd speed command and confirm 
the changing of the rotation speed by returning its new value in mode sense. However, 

the actual rotation speed remains as before until the disc is accessed once again. 
Therefore, it is wise to issue a command for reading a sector from the disc directly 

after the set cd speed command (if the disc is present). Measuring the drive speed 
without a disc in the tray is pointless, suitable only for building the sequence of sup¬ 

ported speeds, because all of the previous speed settings become invalid after inserting 
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a new disc into the drive. Thus, the optimal rotation speed for each disc (from the 
drive’s point of view) must be determined for each individual disc. The drive also has 
the right to change the rotation speed by decreasing it if the read operation is not go¬ 
ing well, or increasing it if everything is OK. 

Investigation of Real Programs 
To summarize all of this material and acquire practical skills, let’s look at several 
popular programs working with CDs at a low level to find out how this interaction is 
carried out. 

Having called on the indispensable Soft-Ice and set the breakpoint to bpx 

CreateFileA if (*esp->4==' \ \\ \. \\'), let us sequentially start the following three 
programs: Alcohol 120%, Easy CD Creator, and Clone CD, each time noting the name 
of the opened device. 

Alcohol 120% 
Alcohol 120%, depending on the settings, can access the disc in three different ways: 
via its own custom driver (by default), via ASPI/SPTI interface, and via ASPI Layer. 
Let’s start with the custom driver. Setting the breakpoint on CreateFileA shows that 
Alcohol opens the \\.\SCSI2: device (the number, naturally, depends on the hard¬ 
ware configuration), and a further check confirms that the DeviceioControl function 
receives the same descriptor that was returned when opening the SCSI device! Conse¬ 
quently, Alcohol considers as ’’custom driver” the miniport driver that it has installed 
in the system in the course of program installation. 

Now, let’s change the Alcohol 120% settings to make it work via the SPTI/ASPI 
interface. After restarting the program (and Alcohol requires that you restart after 
changing the access method), we once again will see the procedure of opening the 
\\. \SCSI2 device, and then the disk WAG: will be opened (the drive letter, naturally, 
depends on the hardware configuration). Essentially, in the course of interaction with 
the device via SPTI interface, things are proceeding in exactly this way. To be more 
precise, they must proceed in such a way. Alcohol 120% opens the WAG: disk multiple 
times, which is an indication of its "freaky architecture”. This complicates our task sig¬ 
nificantly, since we must trace all descriptors simultaneously. If we miss just one of 
them, the reconstructed working algorithm will be incorrect (isn’t it interesting to find 
out how Alcohol 120% copies protected discs?). 

Finally, by switching Alcohol 120% to the last mode of interaction with the disc, 
we will get the following result: \\A\SCSI2, W.\MbMmDp32, WAG:. The device with 
the name "MbMmDp32" is the ASPI driver that we have already encountered. However, 
in this case it is not absolutely clear why Alcohol 120% opens disk WAG:, since the 
ASPI interface doesn’t require it. 
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Easy CD Creator 

Easy CD Creator accesses the drive directly by its ’’native” name (on my computer, this 
is ”cdr4_2k”), then opens the ’’MbDlDp32" device, which CDR4 2K registers itself. 

Consequently, Easy CD Creator works with the disc via the custom driver. 
To clarify how it works, we will have to, first, disassemble the CDR4 2K driver and 

analyze, which ioctl codes correspond to which driver actions, and, second, trace all 
DeviceioControl calls (simply set a conditional breakpoint, which pops up when 
passing its "own" descriptor returned by the CreateFiieA("\\\\.\\CRDR_2K",...) and 

CreateFileA ("\\\ \ . \\MbDlDp32",...) functions). 
After formatting the sequence of ioctl calls in the form of an improvised pro¬ 

gram, we will be able to reconstruct the protocol of interaction with the disc and find 
the protection (if there is any). 

Clone CD 

The breakpoint set to the CreateFileA function indicates that Clone CD communi¬ 

cates with the disc via the custom driver " \ \. \elbycdio", and, for reasons that are unclear, 
it is opened in the loop, so that the driver descriptor is returned multiple times. 
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Chapter 6: Anti-Copying 
Mechanisms 

This chapter covers the organization of various mechanisms for protection against the 

unauthorized copying of CDs and provides explanations of the principles, by which they 

operate, as well as examples of how these mechanisms are implemented in different 

software. It also demonstrates how these protection mechanisms can be neutralized. 

Classification of protection mechanisms: Methods of protection against unauthor¬ 

ized copying can be classified in relation to a number of criteria, the most important 

among which are the following: 

□ The strength of the protection mechanism (can the protected CD be copied by 

a standard copier; by a specialized copier capable of emulating protected media; 
or can it simply not be copied at all). 

□ Principle by which the protection operates (non-standard disc formatting; binding to 
physical characteristics of a specific media). 

□ Compatibility with hardware and software (the protection mechanism is fully com¬ 
pliant with the standard and is compatible with all standard equipment; the pro¬ 
tection mechanism doesn’t formally violate the standard but, however, relies 
on undocumented features of hardware implementation that aren’t guaranteed 
to be supported; or the protection mechanism clearly violates the standard and 
relies on a specific equipment line). 



226 Part III: Protection against Unauthorized Copying and Data Recovery 

□ Implementation level (software level — the creation of the master disc is carried out 
using standard equipment; hardware level — the creation of the master disc re¬ 
quires special equipment). 

□ Interface of communication with the CD drive (standard C and/or Pascal library; 
OS API; low-level hardware access. 

□ Object of protection (protection of the entire disc; protection against file-by-file 
copying; protection against digital grabbing of audio content. 

The strength of the protection mechanism against cracking: There is no absolute 
protection against copying for optical media. Such a mechanism is, in principle, im¬ 
possible to design, because, if the disc can be read, this means that it can also be cop¬ 
ied. Naturally, if hardware protection is effectively built into the drive chipset, the pro¬ 
cedure for cracking it can be extremely difficult, if not impossible, using standard 
equipment. However, what prevents a hacker from modifying the firmware for the 
drive at his or her disposal, or from introducing certain constructive modifications, 
thus blocking the protection mechanism? It is enough to recall the sensational story of 
MOD chips to make all of the illusions of copyright holders disappear like smoke. 

Struggling against professional crackers is absolutely pointless. No one has ever 

won this battle. The faster the process of improving protection mechanisms evolves, 

the more promising are the prospects for cracking them. Even the most perfect pro¬ 

tection mechanisms can be cracked. Realistically, this is merely a question of time, 

motivation, and financial resources (bear in mind that, in this case, the financial po¬ 

tential is almost infinite). 

Therefore, it is necessary to protect against qualified users instead of protecting 

against hackers. Standard copiers (Ahead Nero, Roxio Easy CD Creator), at minimum, 

must not be able to copy the disc. Maximum protection assumes that it is impossible 

to copy the protected CD using specialized copiers designed for protected discs (Alco¬ 
hol 120%, Clone CD). Nevertheless, protection against copying can be very different. 

Physical defects on the surface cannot, in principle, be copied using standard equip¬ 

ment. However, they can easily be simulatedby corrupting the sector checksum. Natu¬ 

rally, this can be detected easily by a more ’’intelligent” protection mechanism. For this 

purpose, however, the protection must delve to lower levels, in comparison with API, 

in order to get direct access to the hardware. Note that this is not positive from the 

point of view of compatibility and security. 

Emulation of the original media is even more difficult to overcome. Some advanced 
copiers (such as Alcohol 120%) create a virtual drive that behaves exactly in the same 

manner as the protected disc. Software of this type carefully reproduces practically all of 
the physical characteristics of the disc’s surface. Hence, the difficulties involved in copy¬ 

ing the original disc depend not so much on the complications associated with imitating 
the specific features of the disc, but, rather, by their hidden location. 
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In other words, it is necessary to find a set of specific distinguishing features, the 

presence of which would be extremely difficult to detect. Good candidates for this role 
are the subcode channels of unreadable sectors. Because of the specific features of CD- 
drive design, the precision of positioning for subchannel data is low, and, consequently, 
the result of the read subchannel SCSI/ATAPI command is not only unpredictable, but 

also impossible to reproduce! Each time this command is executed it returns the sub¬ 

channel data for sector N± 8 + fc, where N is the address of the requested sector, 8 is the 
random drive error, and k the systematic drive error. Thus, grabbing the subchannel 
data of all sectors will take too long. If the subchannel data are intentionally mixed 

and/or corrupted, the problem posed by their copying will become practically unsolv- 
able. Copying such a disc is practically impossible, whether using existing copiers or any 
of the advanced models that will certainly appear in the future. 

The strength of the protection mechanism against a bit-hack is, generally, not critical. 

Even the most advanced and sophisticated protection mechanism will be cracked, pro¬ 
vided that the hacker has enough motivation! Therefore, the only attainable goal that 

that is considered here is the complication of the process for copying original CDs using 
standard or hacker tools. What methods allow us to complicate this copying? 

When MS-DOS and 3,575,25” floppy drives were still dominant, the most popular 

protection methods were non-standard disc formatting and creation of extremely diffi¬ 

cult to reproduce surface defects. These protection mechanisms could be implemented 

at both the hardware and software levels. In this context, the "hardware level" is under¬ 

stood as non-standard equipment used for recording a protected disc (for example, a 
device for creating laser marks by means of vaporizing the magnetic layer at a strictly 

defined location, or even a commonplace variable capacitor, connected in parallel to 

quartz in order to change its frequency and, consequently, its track length. Software 

methods of protection were limited to the use of standard equipment. This considera¬ 

bly reduced the expense involved in duplicating original discs (when it was only nec¬ 
essary to reproduce a small number of items, this was very important). Curiously 

enough, the strength of hardware protection was no higher than that ensured by the 

protection at the software level. All kinds of protection mechanisms could be cracked 

using software methods, and, most often, this could be achieved in a completely 
automatic mode. 

Generally speaking, all of the existing methods of CD protection can be divided 

into the following two types: non-standard disc formatting and binding to the physical 

characteristics of the media surface. Protection mechanisms of the first type can be im¬ 

plemented by means of aberration from the standard. On the other hand, the vast 
majority of "loyal" programs attempt to comply with standards. As a result, the pro¬ 

tected disc cannot be copied using standard methods, and this is exactly the result that 

copyright holders were looking for. The idea of non-standard formatting is not new. 

It was widely used even in the times of "Amiga," "Spectrum," and other ancient computers. 
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This type of protection couldn’t withstand an attack carried out by a reasonably intelligent 

individual. However, the problems that it caused to legal users became legend long ago. 

Any deviation — even the slightest — from the standard would void any guarantee that the 

disc would be readable at all! Because of the wide variety of the equipment available on the 

market, it is impossible to test protected discs on all existing drive models. Consequently, 

there is the risk that owners of untested models will encounter serious problems. The more 

significant are the deviations from the standard, the higher this risk will be. 

Protection against Protection against 
file-by-file copying sector-by-sector CD copying 

% # 
^Protection types 

Protection against Protection against 
digital audio grabbing playback in CD-ROM drives 

Fig. 6.1. Classification of protection mechanisms 

Disc protection against playback in computer CD-ROM drives, also called protection 
against digital playback, is the most infamous of all protection mechanisms. The main 

goal of this type of protection is the prevention of unauthorized copying the disc and 
grabbing its contents into MP3 format, without preventing normal playback. Obvi¬ 
ously, the requirements of the protection here are mutually exclusive, because the 

playback of an audio disc is, in itself, an example of grabbing. Whether the grabbed 
data are supplied to the DAC input or to the input of an MP3-compressor is not im¬ 
portant, because the drive doesn’t inform the disc which circuitry it will use to read it 
(why should a crocodile chat with its breakfast). 

In practice, however, the situation is somewhat different. Low-end audio players 

and computer CD-ROM drives differ significantly in their design and interpret the 
same information written on a CD differently. With regard to computer CD-ROM 
drives, they most frequently play audio discs through a special audio channel, which 
differs significantly from the digital data channel. Thus, the creation of a protection 

mechanism is reduced to the intentional introduction of errors into the disc structure 
that will manifest themselves only in the digital grabbing mode, while remaining un- 
noticeable in all other situations. 

As has already been mentioned, any modification of the disc structure going 

beyond the limitations implied by the standard renders this disc ’’non-standard.” 
The behavior of non-standard discs on arbitrary-selected equipment is unpredictable! 
At the same time, the processing of non-standard audio discs is significantly different 
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from the processing of non-standard data discs. A protection mechanism built into an 
executable file is, in fact, a program. Consequently, it knows everything about the format 

corruption of the protected disc and knows how to process it. Just one thing is required 
of the CD-ROM drive — to read the data and do what, and only what, it is instructed to 
do. The situation is completely different when an audio disc is processed by CD-ROM 

firmware. In this case, an external program (CD-ROM firmware) that corresponds to the 

standard is used for processing of the corrupted data. As a result, CD-ROM drive firm¬ 
ware can interpret any deviations from the standard as a situation where there is a "non- 
audio disk” or there is "no disk present." The large variety of digital equipment consid¬ 
erably complicates the problem of testing protection mechanisms for compatibility. 

Actually, the protection of audio CDs against copying turns into protection against 

playback. Often, these discs can not even be played on standard audio players, let 
alone CD-ROM drives. On CD-ROM drives, they can only be played if they can be 
played at all, through an audio channel, which gradually dies away. Windows 2000 and 
Windows XP, for example, use digital playback of audio discs actively. On Macs, ac¬ 

cording to rumors I’ve heard, this is the main playback mode. Since the discussion of 
the advantages of digital playback in comparison to analog playback is a topic for an¬ 
other book, we won’t concentrate on this topic here. It is enough to note that every 

user has the right to choose his or her preferred playback method. Consequently, 
cracking this kind of "protection" is justifiable — if not a noble deed! 

The PHILIPS Corporation, which is one of the inventors of CD technology, 

strongly opposes any deviations from the standard and insists on that protected 
discs including anti-copying technology should not use the "Compact Disc" logo. 

Legislation in many countries supports this stance. Any disc protected by a non¬ 
standard format must be marked with an unequivocal warning that, although the 

piece of plastic you are purchasing bears a resemblance to a CD, in reality, it is not 
a proper CD. 

Nostalgic reminiscence 
Long ago, when Spectrum computers were quite popular, one publisher of an e-zine (after 
so many years, the name of the company escapes me) invented a protection system in the 
following form. The controller chip for the drive is supplied with a specific clock frequency, 
which forms the basis for its operation. Because, in this case, the MFM recording method is 
used, the track length depends on the frequency. Normally (if my memory serves me well), 
the track length was in the range of 6,200 bytes (unformatted). Well, this company, or, 
more likely, one bunch of guys :), created a shorter track on the disc, of about 5,000 bytes. 
Thanks to the PLL in controller, it could be read quite normally. However, the length of 
5,000 bytes was preserved. This protection was impossible to overcome on a standard 
computer (obviously). However, hackers immediately came up with the idea to connect 
a variable capacitor in parallel to the quartz. By tuning this variable capacitor, it was possible 
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to obtain a track of the desired length. For the moment, it was difficult to say for 

sure who was the first to invent this method, because it was invented and reinvented 

many times. However, Bob Johns, who was writing a copier for discs protected in this 

manner exactly by that time, was the first to provide information on this method to the wide 

user community. 

Built-in CD Protection 
CD protection against unauthorized copying was initially built into CDs. Even in times 
immemorial, when there were no PCs and no data CDs, and the problem of piracy 

didn’t really exist, the Red Book already described a special bit called the digital 
copy prohibited/permitted, which prohibited digital reading from the medium if the 
copyright holder so desired (view the control field of the Q subcode channel — if the 

first bit, starting from zero, is reset to zero, then digital reading is permitted, and vice 
versa). However, neither of the CD-copying programs of which the author is aware 
takes this bit into account. For instance, Ahead Nero Burning ROM displays a warning 
message, but nothing more. Neither of the CD-ROM drives blocks digital reading, 
even in the case that it is ’’prohibited.” This is the result, partially, of the fact that digital 
playback has considerable advantages over analog playback (lower parasitic noise, 

software correction of sound, etc.). For these reasons, analog audio is rapidly being 
squeezed out of the market. Devices that do not support digital playback have little 
chance of finding a niche in the market. Consequently, device manufacturers have 

little choice but to ignore this standard as a result of consumer demand. 

Protection Mechanisms 
Based on Non-Standard Disc Formats 

Incorrect TOC audits Consequences 
TOC invalidation is a cruel, ugly, but strangely widespread technique in protection 

mechanisms. End-user copiers (Easy CD Creator, Stomp Record Now!, Ahead Nero) 

actually go a little nuts when encountering discs of this type. Copiers of protected disks 

(Clone CD, Alcohol 120%) are much more loyal to an incorrect TOC. However, in 

order to obtain a usable copy, they require a specific combination of reading and 

burning devices. Even given this, successful copying of these discs is not guaranteed. 

The burning device must support the RAW DAO (Disc At Once) mode, i.e., 

the mode by which the entire disk is written at a single pass. The RAW SAO (Session 

At Once) mode isn’t suitable for this purpose, since it orders the drive to write 
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the session contents before writing the TOC. Consequently, the drive has to analyze 

the TOC on its own in order to determine the session length and its starting address. 

An attempt to write an incorrect TOC in SAO mode generally results in unpredictable 

drive behavior. Consequently, it is pointless to hope for the generation of a usable 

copy of a protected disc! As a rule, the first session with an incorrect TOC encountered 

by the drive proves to be the last. This is because there is no room to write all of the 

other sessions (TOC invalidation is usually aimed at increasing the session size to sev¬ 

eral gigabytes). 

The CD-reading device, besides reading in a Raw mode (which is supported by 
practically all drives), must be able to recognize an incorrect TOC. When it encounters 

such a case, it must automatically switch to a ’’reserved” addressing resource, namely, 
to the Q subcode channel. Otherwise, the session containing the incorrect TOC will be 
unavailable for reading even at the sector level. 

Thus, not all equipment is appropriate for copying discs with incorrect TOCs. About 

one third of all available copier models are unsuitable for this purpose. In order to find 

out if the model that you have chosen supports the RAW DAO mode, refer to the on¬ 

line Help system of Clone CD, which provides a long list of various drives (unfortu¬ 

nately, the ones that I have chosen are not listed here), along with their characteristics. 

Another approach is to issue the 46h (get configuration) SCSI/AT API command and 
check the drive’s response. Of my two copiers, only NEC supports the RAW DAO 

mode. The situation is even more complicated with regard to determining the ability 
of reading incorrect sessions, since this ability represents exclusively internal drive 

logic. As a rule, even if the drive is capable of working with an incorrect TOC, the drive 

itself does not indicate this, and drive manufacturers usually do not advertise this fea¬ 

ture. This information has to be found experimentally. For instance, take a disk with 

an intentionally invalidated TOC (later in this chapter, I’ll explain how to create one), 
insert it into the drive, and try to read sectors from an incorrect session. Different 

drives might react very differently. For instance, PHIFIPS, depending on the "mood" 

of its circuitry, might either report a read error or return a stream of unintelligible 

gibberish, where even a sync in the raw header isn’t recognizable. 

The main drawback of protection mechanisms based on TOC invalidation is that 

some drives refuse to recognize these disks, and, therefore, make playback impossible. 

A legal user, who has suffered inconveniences due to the incompatibility of his 

or her hardware with the protection mechanism, will, in the best case, complain and 
return the disk to the manufacturer. Naturally, this can be only done if he or she is 

able to eject this trash from the drive. This question is problematic, since the embed¬ 

ded microprocessors of some drives simply "hang" when they attempt to analyze an 

incorrect TOC. In these cases, the drive, literally speaking, retreats into its shell. It be¬ 

comes fully abstracted from all of the "irritants" of the outside world, including the 
user’s attempts to eject the disk. Of course, the hole for ejecting disks in emergency 
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cases1 hasn’t been removed entirely, but, according to some rumors, it isn’t present 

on all drives (although myself have never encountered a drive lacking this feature). 

On the other hand, this hole in many cases is concealed behind the decorative panel. 
Cases where the user isn’t aware of the existence of this feature or how to use it, are 

even more frequent. Macintosh systems lack these holes (or Mac users never suspected 

that they might exist). Anyway, the number of law suits that they have filed is virtually 

uncountable. The most interesting fact here is that the courts have ruled in favor of an 

overwhelming majority of these suits. As a result, the developers have had to pay for 

the ’’repair” of equipment, moral injury, and, finally, the legal costs for the cases. 

(By the way, removing protection from disks written with crude violations of the standard, 

and in particular, those with an incorrect TOC, is not considered to be cracking. Conse¬ 

quently, it can't be prosecuted by Law. Therefore, if you encounter discs of this type, crack 

them without any qualms). 

Incorrect Starting Address for the Track 

To create a protected disk with a incorrect TOC, we will need: Any burner capable of 
creating multi-session disks (Roxio Easy CD Creator, for example); a copier of pro¬ 

tected disks that stores the TOC contents in a text file that can be edited (we will work 
with Clone CD); and, finally, a burning drive that supports the RAW DAO writing 
mode. Although I don’t like this style of presenting materials, for the sake of simplic¬ 

ity, all actions will be described in the form of step-by-step instructions. 
Step One: Creating an Original Disk. Take a virgin CD-R disk from the pack, or, 

better still, an "old stager" CD-RW. Insert it into the drive and write a couple of ses¬ 

sions in standard mode. It would be even better (or, to be more precise, more obvi¬ 
ous) if the second session includes all of the files from the first session — the one, 

the TOC of which we are going to disfigure. The most interesting question is whether 
or not the drive will be able to read its contents. 

Step two: Obtaining the image of the original disk. Start Clone CD and instruct it to 
create an image of the original disk (at this stage, the chosen profile for settings is not 

critical. Because the disk isn’t protected yet, we can use both the Data CD and Pro¬ 

tected PC Game options with the same level of success. Note that it isn’t necessary to 

click the Create "Cue-Sheet" checkbox, because this option is available only for single¬ 

session CDs). 

1 Carefully look at the front panel of your CD-ROM. Do you see a tiny hole about 1 mm in diame¬ 
ter below the tray? Use any long, thin, and sufficiently firm object, for instance, such as metallic clip 
to slightly open the tray by entering the "picklock" into the hole up to the stop and press slightly. 
Here you are! Now, it is possible to open the tray manually. Attention: First of all, do not forget to 
power down the computer before doing this operation. Second, hold the "picklock" strictly hori¬ 
zontally, otherwise you can miss and damage some sensitive unit. 
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Step three: Invalidating the starting address of the first track in the CD image. 

If everything has been done correctly and both the software and the hardware operate 
normally, the following three files will be created on your hard disk: IMAGE. CCD — 
containing the contents of the Q subcode channel of the Lead-in area or, simply 
speaking, the TOC; IMAGE. IMG — the raw disk image containing all sectors starting 
from 00:00:02 and including the total number of available sectors; and IMAGE.SUB 
— the contents of the subcode fields of the Program Memory Area. In principle, the 

latter file might not be present (it is created only if the Read subchannels from data 

tracks checkbox is set). This circumstance is not critical, however, because, at this 

point, we are mainly interested in the TOC itself and not the subcode channels! Open 
the IMAGE. CCD file using any plain-text editor and try to translate the language of 

the disk geometry into normal, human-friendly language. The contents of a valid TOC 
in RAW format are shown in Listing 6.1. 

Listing 6.1. The contents of a valid TOC in RAW format 

[CloneCD] ; Information on the Clone CD product 

Version=3 ; Clone CD version. Of little importance 

[Disc] ; Disk information 

TocEntries=12 ; Number of TOC entries 

Sessions=2 ; Number of sessions = 2 

DataTracksScrambled=0 ; DVD field (see inf-8090), for CDs this info is pointless 

CDTextLength=0 ; No CD-Text in subcode fields of the Lead-in area 

[Session 1] ; Session 1 information 

PreGapMode=l ; Track type — Mode 1 (data track, 2048 bytes of data) 

PreGapSubC=0 ; No subchannel data 

[Session 2] ; Session 2 information 

PreGapMode=l ; Track type — Mode 1 (data track, 2048 bytes of data) 

PreGapSubC=0 ; No subchannel data 

[Entry 0] ; Information of the TOC entry N?0 

Session=l ; Entry of session 1 

Point=0xa0 ; 1st track of session 1 number in PMin/disk type in PSec 

ADR=0x01 ; q-Mode == 1 

Control=0x04 ; Digital copy prohibited ;-) 

TrackNo=0 ; The track we are currently reading — 

; this is the Lead-in track (i.e., the TOC) 

AMin=0 ; \ 

ASec=0 ; + Absolute address of the current track 
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AFrame=0 

ALBA=-150 

Zero=0 

PMin=l 

PSec=0 

PFrame=0 

PLBA=4350 

/ 
LBA-address of the current track 

This field must be set to zero, which is the case 

Number of the first track of session 1 

Disk type CD-DA or CD-ROM in Mode 1 

No useful information 

Track number presented by CloneCD as the LBA-address, 

i.e., trash 

[Entry 1] 

Session=l 

Point=0xal 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=l 

PSec=0 

PFrame=0 

PLBA=4350 

; Information of TOC entry N?1 

; Entry of session 1 

; Number of the last track of session 1 in PMin 

; q-Mode == 1 

; Digital copy prohibited ;-) 

; Track that we are currently reading — Lead-in track 

; (i.e., the TOC) 

; \ 
; + Absolute address of the current track 

; / 
; LBA-address of the current track 

; This field must be set to zero, which is the case 

; Number of the last track of session 1 

;(only one track in the session) 

; No useful information 

; No useful information 

; Track number presented by CloneCD as LBA-address, 

; i.e., trash 

[Entry 2] 

Session=l 

Point=0xa2 

ADR=0x01 

Control=0x04 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

EMin=0 

PSeo=29 

PFrame=33 

Information of the TOC entry N?2 

Entry of session 1 

Position of Lead-out area in PMin:PSec:PFrame 

q-Mode == 1 

Digital copy prohibited ;-) TrackNo=0 

Track that we are currently reading — 

Lead-in track (i.e., TOC) 

\ 
+ — Absolute address of the current track 

/ 
LBA-address of the current track 

This field must be set to zero, which is the case 

\ 
+ — Absolute address of the Lead-out area of session 1 

/ 
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PLBA=2058 ; LBA-address of Lead-out area of session 1 

[Entry 3] ; Information of the TOC entry N?3 

Session=l ; Entry of session 1 

Point=0x01 ; Information of track 1 of session 1 

ADR=0x01 ; q-Mode == 1 

Control=0x04 ; Digital copy prohibited ;-) 

TrackNo=0 ; Track that we are currently reading — Lead-in track 

; (i.e., TOC) 

AMin=0 ; \ 

ASec=0 ; + — Absolute address of the current track 

AFrame=0 ; / 

ALBA=-150 ; LBA-address of the current track 

Zero=0 ; This field must be set to zero, which is the case 

EMin=0 ; \ 

PSec=2 ; + — Absolute address of the starting point 

; of track 1 of session 1 

PFrame=0 ; / 

PLBA=0 ; LBA-address of the starting point of track 1 of session 1 

[Entry 4] ; Information of the TOC entry N?4 

Session=l ; Entry of session 1 

Point=0xb0 ; Position of the next writable area in AMin:ASec:AFrame 

ADR=0x05 ; q-Mode == 1 

Control=0x04 ; Digital copy prohibited ;-) 

TrackNo=0 ; Track that ws are currently reading — Lead-in track (i.e., TOC) 

AMin=2 ; \ 

ASec=5 9 ; + — Absolute address of the next writable area 

AFrame=33 ; / 

ALBA=13308 ; LBA-address of the next writable area 

Zero=3 ; Number of pointers in Mode 5 

PMin=22 ; \ 

PSec=14 ; + — Absolute address of the maximum writable area 

PFrame=34 ; / 

PLBA=99934 ; LBA-address of the maximum writable area 

[Entry 5] ; Information of TOC entry N?5 

Session=l ; Entry of session 1 

Point=0xc0 ; Starting address of the Lead-in area of Hybrid disk 

; (if there is any) 

ADR=0x05 ; Mode 5 (Orange book) 

Control=0x04 ; Digital copy prohibited ;-) 

TrackNo=0 ; Track that we are currently reading — 

; this is the Lead-in track (i.e., TOC) 
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AMin=162 Recommended laser power for burning 

ASec=128 ; Application code 

AFrame=140 ; Reserved 

ALBA=288590 ; LBA-”address” of three preceding fields 

Zero=0 ; Reserved 

PMin=97 ; \ 

PSec=27 ; + — Absolute Lead-in address of the disk hybrid area 

PFrame=21 ; / (Address is beyond the limits of the disk, 

i.e., there is no Hybrid disk) 

PLBA=-11604 
' 

LBA-address of Lead-in area of Hybrid 

(computed with overflow) 

[Entry 6] ; Information of the TOC entry N?6 

Session=l ; Entry of session 1 

Point=Oxcl ; Copy of ATIP information 

ADR=0x05 ; -+ 

Control=0x04 ; -+ 

TrackNo=0 ; -+ 

AMin=4 ; -+ 

ASec=120 ; -+ 

AFrame=96 ; -+ 

ALBA=26946 ; -+ — ATIP information 

Zero=0 ; -+ 

PMin=0 ; -+ 

PSec=0 ; -+ 

PFrame=0 ; -+ 

PLBA=-150 -+ 

[Entry 7] ; Information of TOC entry N?7 

Session=2 ; Entry of session 2 (here we have finally got to session 2!) 

Point=OxaO ; Number of first track of session 2 in PMin/disk type in PSec 

ADR=OxO1 ; q-Mode == 1 

Control=0x04 ; Digital copy prohibited ;-) 

TrackNo=0 ; Track that we are currently reading — Lead-in track 

(i.e., TOC) 

AMin=0 ; \ 

ASec=0 ; + — Absolute address of the current track 

AFrame=0 ; / 

ALBA=-150 ; LBA-address of the current track 

Zero=0 ; This field must be set to zero, which is the case 

PMin=2 ; Number of the first track of session 2 

(track numbering is pass-through!) 

PSec=0 ; Disk type CD-DA and CD-ROM disk in Mode 1 
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PFrame=0 

PLBA=8850 

No useful information 

Track number presented by CloneCD as LBA-address, i.e., trash 

[Entry 8] 

Session=2 

Point=0xal 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=2 

PSec=0 

PFrame=0 

PLBA=8850 

Information of TOC entry N?8 

Entry of session 2 

Number of the last track of session 2 in PMin 

q-Mode == 1 

Digital copy prohibited ;-) 

Track that vie are currently reading — Lead-in track (i.e., TOC) 

\ 
+ — Absolute address of the current track 

/ 
LBA-address of the current track 

This field must be set to zero, which is the case 

Number of the last track of session 2 

(the session has only one track) 

No useful information 

No useful information 

Track number presented by CloneCD as LBA-address, 

i.e., trash 

[Entry 9] 

Session=2 

Point=0xa2 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

EMin=3 

PSec=24 

PFrame=23 

PLBA=15173 

Information of TOC entry N?9 

Entry of session 2 

Position of the Lead-out area in PMin:PSec:PFrame 

q-Mode == 1 

Digital copy prohibited ;-) 

Track that we are currently reading — Lead-in track (i.e., TOC) 

\ 
+ — Absolute address of the current track 

/ 
LBA-address of the current track 

This field must be equal to zero, which is true 

\ 
+ — Absolute address of the Lead-out area of session 2 

/ 
LBA-address of the Lead-out area of session 2 

[Entry 10] 

Session=2 

Point=0x02 

ADR=0x01 

Control=0x04 

TrackNo=0 

Information of TOC entry N?10 

Entry of session 2 

Information of track 2 of session 2 

q-Mode == 1 

Digital copy prohibited ;-) 

Track that we are currently reading — Lead-in track (i.e., TOC) 
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AMin=0 \ 

ASec=0 ; + — Absolute address of the current track 

AFrame=0 ; / 

ALBA=-150 ; LBA-address of the current track 

Zero=0 ; This field must be equal to zero, which is the case 

EMin=3 ; \ 

PSec=l ; + — Absolute address of the starting point 

of track 2 of session 2 

PFrame=33 ; / 

PLBAKL3458 IBA-address of the starting point of track 2 of session 2 

[Entry 11] ; Information of TOC entry N?ll 

Session=2 ; Entry of session 2 

Point=0xb0 ; Address of the next writable area in AMin:ASec:AFrame 

ADR=0x05 ; Mode 5 

Control=0x04 ; Digital copy prohibited ;-) 

TrackNo=0 ; Track that we are currently reading — Lead-in track 

(i.e., TOC) 

AMin=4 ; \ 

ASec=54 ; + — Absolute address of the next writable area 

AFrame=23 ; / 

ALBA=21923 ; LBA-address of the next writable area 

Zero=l ; Number of Mode 5 pointers 

EMin=22 ; \ 

PSeo=14 ; + — Absolute address of the last possible Lead-out area 

PFrame=34 ; / (in fact, the disk contains 23 minutes. 

Just look at the rounding error 22:14:34) 

PLBA=99934 LBA-address of the last possible Lead-out area 

[TRACK 1] • Information of track 1 

MODE=l ; Mode 1 

INDEX 1=0 Post-gap? 

[TRACK 2] • Information of track 2 

MODE=l ; Mode 1 

INDEX 1=0 Post-gap? 

Generally speaking, the disk contains two sessions, with one track in each. 
The absolute address of the starting point of the first track is 00:00:02, while the ab¬ 
solute address of the Lead-out area of the first session is 00:29:33 (the address of the 
track’s last sector is shorter by two seconds). The absolute address of the starting point 

of the second track is 03:01:33, while the absolute Lead-out address of the second 
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session is 03:24:33. The maximum achievable disk capacity is 22:14:34 (although it is 

labeled as a 23-minute disk). 
Now let’s corrupt the TOC by increasing the starting address of the first track so 

that it exceeds the limits of the first session. For the moment, it doesn’t matter where it 
points. It will point somewhere. To find the entry that corresponds to it quickly, use 

the context search. Press <F7> and enter point=0xl: 

Listing 6.2. Attributes of track 1 

[Entry 3] 

Session=l 

Point=0x01 

; Information of TOC entry N?3 

; Entry of session 1 

; Information of track 1 of session 1 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

; q-Mode == 1 

; Digital copy prohibited ;-) 

; Track that we are currently reading — Lead-in track 

; (i.e., TOC) 

; \ 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

EMin=0 

PSec=2 

; + — Absolute address of the current track 

; / 

; LBA-address of the current track 

; This field must be equal to zero, which is the case 

; \ 

; + — Absolute address of the starting point 

; of track 1 of session 1 

PFrame=0 ; / 

PLBA=0 ; LBA-address of the starting point of track 1 of session 1 

As we can see, here we have both the absolute track address, measured in 

minutes: seconds: frames, and the LBA address of the track. The LBA address is noth¬ 
ing more than the logical number of the sector, starting from zero. In practice, 

the LBA-address field is lacking in the TOC. Here (in the Clone.ccd file) it was added 
by Clone CD on its own initiative. Actually, the TOC doesn’t contain an entry for the 
LBA-address. Presumably, Clone CD computes the LBA-address for the sake of con¬ 
venience (and, in fact, it is much more comfortable to work with LBA-addressing). 
However, when you introduce any modifications into CCD-files, you have to track the 
correspondence between both types of addresses on your own. In order to translate 
the absolute addresses into LBA format, it is possible to use the following formula: 

Logical Sector Address = (((Minute * 60) + Seconds) * 75 +Frame) — 150. 
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The listing below shows the attributes of track 1 before and after the introduction 
of intentional errors. 

Listing 6.3. The attributes of track 1 before distortion (left), and after distortion 
(right) 

[Entry 3] [Entry 3] 

Session=l Session=l 

Point=0x01 Point=0x01 

ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 

AMin=0 AMin=0 

ASec=0 ASec=0 

AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 

Zero=0 Zero=0 

PMin=0 PMin=10 

PSec=2 □ PSec=2 

PFrame=0 □ PFrame=0 

PLBA=0 □ PLBA=-1 

The crafty author used a clever trick instead of calculating the LBA-address. 
In fact, I placed my bet on the fact that my version of Clone CD would always use ab¬ 
solute addresses and ignore the LBA. You may use any address of the first track. How¬ 

ever, it was done in such a way as to ensure that an invalid address is guaranteed to go 
beyond the limits of the first session, whose Lead-out area is located at the address 
00:29:33 (see TOC entry 2). 

Step Four: Mounting the invalidated image to the virtual drive. Now let’s mount the 

invalidated disk image on the Alcohol 120% virtual drive. What good will come of 
this? Naturally, we cannot be sure that the virtual drive will behave as an actual drive. 
But, on the other hand, real drives also behave unpredictably when dealing with cor¬ 
rupted disks! Therefore, the use of Alcohol 120% as a working model makes sense, 
especially since it allows you to save both time and writing media. After all, mounting 

a virtual drive instead of burning a real CD can be done almost instantly (provided, 
of course, that it is done at all). Up to version 1.4.3 — the newest version at the mo¬ 
ment of writing — Alcohol 120% essentially couldn’t deal with corrupted disk images. 
The program refused to mount them, informing the user that the file image was not 

available: Unable to mount image. File not accessible. Presumably, Alcohol 120% 
understands the incorrect TOC too literally, trying to find something that is guaranteed 
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to be missing from the image file (in fact, there is no track starting at address 10:02:00 

and terminating with the address 00:29:33). 

What a pity! The ability to mount disk images with incorrect TOCs would enable 
us to overcome the protection not only on those drives supporting the RAW DAO 
mode, but on every burning drive. In this case, we could save the image of the pro¬ 

tected disk to the media in the form of a normal file, and then mount it dynamically 
using Alcohol 120% as necessary. Thus, Alcohol 120% is considerably less "hard- 

boiled" than it seems. 

Step five: Writing an invalidated image to the disk As an experiment, let’s try to 
burn the invalidated image in the RAW SAO mode, in which, as was shown earlier, the 
proper writing of sessions with incorrect TOCs is impossible. To guarantee the elimi¬ 
nation of possible side effects, it is best to use a drive that doesn’t provide hardware 
support for RAW DAO mode (what if the copier decides to demonstrate a wonder 
of artificial intelligence and automatically switches to a more suitable writing mode, 
ignoring our manual settings). 

The image burning wizard in Alcohol 120% provides the information shown 
in Listing 6.4 for the image to be written. Pay specific attention to the size and address 
of the first track of the first session (they are in bold). 

Listing 6.4. The summary information on the image to be written, displayed 
by Alcohol 

Type: 

Path: 

Name: 

Size: 

Sessions 

Tracks: 

CloneCD image file 

L: \ 

Image.ccd 

Image.img 

Image.sub 

8.81 MB 

2 

2 

Session 01: 

Track 01: Mode 1, Length: -42942(8191.92 GB), Address: 045000 

Session 02: 

Track 02: Mode 1, Length: 001715(3.3 MB), Address: 013458 

Beautiful! If we believe Alcohol 120%, then the length of the first track is 8 TB. 
This monstrous amount of data will never fit on a DVD, let alone a CD. In fact, track 

length is not stored anywhere in the TOC. On the contrary, it is computed as the dif¬ 
ference between the starting addresses of two adjacent tracks (if the session contains 

only one track, then the address of the Lead-out area adjacent to the track is used). 
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The invalidation of the starting address of the first track has resulted in a negative dif¬ 
ference between the starting addresses of this track and the Lead-out area. Actually, 

00:29:33 - 10:02:00 = 2058 - 45000 == - 42942. If we remember that, according to 
the standard, LBA-addresses are 32-bit non-negative numbers, it becomes clear how 

Alcohol has obtained such an unnatural value (negative numbers always have the most 
significant bit set, hence a very small negative number corresponds to a very large 

positive one). Simple calculations show that the value of 8 TB, identified by Alcohol, is 
achieved only when using 43-bit variables. As it turns out, Alcohol 120% is designed 
with a reserve for the future. As a matter of fact, discs larger than 30 GB are antici¬ 
pated. For addressing such disks, 32-bits will be insufficient. Besides, it is necessary to 
account for the reserve required for "trapping" negative lengths that appear as a result 

of TOC invalidation, since Alcohol is a protected copier! 
Finally, the most important moment arrives, namely, the burning of the invali¬ 

dated image on CD-R/CD-RW. 

If you are using a CD-RW disc, you must be aware that you could ruin it! If the only 

CD-RW drive that you have at your disposal refuses to recognize such a disk, it will 

be impossible to erase it. 

After "swallowing" the invalidated image, Alcohol 120%, without any complaint, 
burns the write indicator (if, of course, your drive has one) and proceeds with 
the burning process. A minute or two passes, but the progress bar will remain at 

the zero mark. By the end of the 6th minute, when the write head reaches the disk 
edge, the burning process terminates abnormally, and Alcohol 120%, after producing 
a sad "bang," reports a hardware error. 

Viewing the resulting disc on ASUS and NEC drives allows you to see only the first 

session. No traces of the second session can be found. It seems that it has passed like 
a witch in the night. The situation is even worse with the PHILIPS drive, since it re¬ 
fuses to recognize what you insert as a CD. After short time, during which it produces 

raspy sounds from its mechanical internals, accompanied by strained wails of the 
motor as it tries different speeds, the "DISC IN" indicator blinks sadly and goes out. 

The "sadness" means that, if you have invalidated the disk, you’ll have to kiss it good¬ 
bye. If it was a cheap CD-R, this doesn’t matter. However, a usable CD-RW is a greater 

loss. Fortunately, on NEC drives, CD-RW can be cleared successfully. Encouraged by 
this circumstance, let us continue with our disk harassment. 

Clone CD copier, in this respect, behaves differently. First, it evaluates the length 

of the corrupted track as 4,294,868,664 bytes (see the listing provided below). This in¬ 
dicates that this copier uses 32-bit variables, and, consequently, is unable to distin¬ 
guish positive values from negative values. Pay special attention to the size of the first 

track of the first session (in bold). 

CAUTION 
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Listing 6.5. The summary information on the image to be written displayed by 
Clone CD 

INFORMATION ON THE IMAGE FILE: 

Number of sessions: 2 

Disk space required: 34850 KB 

Sectors: 15173 

Time: 03:22:23 (minutes:seconds:framesK) 

INFORMATION ON SESSION 1: 

Session size: 4726 KB 

Number of tracks: 1 

Pregap: Mode 1 data, size: 103359 KB 

Track 1: Mode 1 data, size: 4294868664 KB 

INFORMATION ON SESSION 2: 

Session size: 3939 KB 

Number of tracks: 1 

Track 2: Mode 1 data, size: 3939 KB 

Second, having detected that the burning of an incorrect TOC is impossible on this 

drive, Clone CD fixes the TOC so that it takes a correct form. As a result, the burning 

process goes on without any errors and we obtain a disc that looks like a usable and 

functional CD. The starting address of the first track starts where the Lead-in area 

of the first session ends (or, to be more precise, the Pre-gap area of the first track starts 

at the point where the Post-gap Lead-in area of the first session ends. This fact, 

however, is of minor importance to us). Such a disk will normally be read by any 

CD-ROM drive. There is, however, a trap! If a protection mechanism reads the TOC 

contents, it will easily detect that it is dealing with a copy and not with the original 

disc. Why, then, do we need this type of copying, if only the copier could display at 

least some warning? Well, professionals will quickly recognize the trap. Beginners or 

simply, normal users, however, will have problems. In other words, it’s a tough job. 

However, in RAW DAO mode the burning of the invalidated image carries on just 

fine, and Clone CD doesn't introduce a wheeze into the TOC, thanks to which we get 

a truly protected CD, which will now try to crack. 

Step six: Testing the usability of a protected disk. Viewing a protected disk on 
a NEC drive displays all of the files. This includes those that belong to the first track, 
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namely, those whose staring address was badly corrupted. By double-clicking on those 
files, you can make sure not only that they are present in the directory, but also that 

they can be opened successfully by associated applications. To all appearances, these 
files look OK. But some uneasy doubts start to torture our souls: Did the CD-RW 

drive actually burn the starting address of the first track as we required? 
To answer this question, we have to analyze the disk geometry, i.e., to simply read 

the TOC. Let’s start Roxio Easy CD Creator, which we have already grown to love, and 

find the CD Information command in the CD menu. Click on it, and you’ll immedi¬ 
ately see a dialog displaying the disk layout. 

Not every product is capable of understanding an incorrect TOC! Easy CD Creator 
can do this, while Stomp Record Now!, for instance, isn't capable of doing so. If 
there is no suitable program at your disposal, you can use the raw. TOC.exe utility 

CAUTION supplied along with this book. 

As we might have expected, the starting address of the first track is far beyond 
its ’’native” session, and its length, expressed as a positive number, significantly 
exceeds the available disk capacity (Fig. 6.2). Thus, all of our concerns are absolutely 
groundless! 

CD Information a 
Devices: 

I My Computer 

[030713,1 £49 (G:) 

(M:) 

I & IN:) 

Li& (0:) 

Drive: G: PHILIPS CDRW2412A 

CD Type: Data Model or Audio CD [Re-Writable) 

Writability: Non Recordable 

Sessions: 2 Tracks: 2 

Free sectors: 000000 0,00bytes (00:00) 

Written sectors: 015171 29,63 MB (03:22) 

Session I Track I Address I Length 

01 01 ( Data Mode 1 ) 045000 (-42944 r8 191,9.2) 

02 02 (Data Mode 1 ) 013458 001713 (3,35 MB) 

Read Track Erase... Recover Finalize Session 

Close Help 

Fig. 6.2. Negative length of the first track drives the standard copier crazy 
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But how do we access the contents of the first track? Well, who said you that a CD 
is addressed on the basis of tracks in the first place? The base addressing unit for data 

CDs is the sector. The absolute address of each sector is unambiguously defined by its 
Q-subcode channel (on account of the fact that the boundaries of sections and sectors 

might differ, the maximum possible difference allowed by the standard is 1 second, 
i.e., 75 sectors. Therefore, this method is used only for the rough positioning of an op¬ 

tical head). Precise positioning is carried out directly by the sector header, which con¬ 
tains its absolute address in a native form. Track numbers do not take part in the pro¬ 
cess of sector processing, or, to be more precise, may or may not take part in this 

process. This depends on the drive model and its firmware. Their participation and the 
details of this process represent a deep secret on the part of the drive’s developers. 
They do not advertise these! However, some way or other, some drives become con¬ 
fused when encountering an incorrect TOC. 

The results of testing that I have conducted are as follows: NEC and TEAC show 

the contents of both sessions and process their contents correctly. ASUS shows only 

the first, incorrect session, and doesn’t see the second session, making it unavailable 

even at the sector level. However, files of the first session are processed properly 

enough. PHILIPS sees both sessions, but it correctly processes only the files of the last 

session (i.e., the one that isn’t invalidated). The incorrect session is available at the 

sector level, but access to it is not stable. Sometimes, without any visible reason, 

PHILIPS goes crazy and returns only senseless gibberish. 

Thus, the following conclusion can be drawn: Protection mechanisms based on an 

incorrect TOC cannot bind to any session. Therefore, both sessions must duplicate the 

contents of the other in hope that the drive at the user's disposal will read at least one 

of them. What is the sense in this kind of protection then? Still, there is some sense 

in this. Although the protection cannot be bound to sessions, it can be bound to 

the raw contents of the TOC. Later in this chapter, we will discuss how to carry 

out this kind of binding in practice. Lor the moment, let’s try to copy the protected 

disk using our favorites — Clone CD and Alcohol 120%, not forgetting, of course, 

about standard copiers. 

Automatic Copying and a Discussion of its Results 

My favorite and most beloved program, Stomp Record Now!, when attempting to copy 
a disk with an incorrect starting address for the first track, displays the invalid disk 

error message and refuses to start the operation. This isn’t a surprise. After all, what 

else could be expected from a copier intended for end users? 
It is much more interesting to test the behavior of Ahead Nero — the most popular 

professional copier. A test shows that, independently of the state of the Ignore 

Illegal TOC Type checkbox on the Read options tab, and independently of other 
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options that the user may set, it is impossible to copy the protected disk. Nero doesn’t 

make any attempt at reading the disk and displays the invalid track mode error 

message! The CD Speed utility supplied as part of Nero also works improperly. It car¬ 

ries out scanning of the area where the illegal address is located rather than the first 

track. The second track is not displayed at all. 

Now let’s proceed with copiers of protected disks. Clone CD is one tool of this 

type, and its developers insist that it is capable of overcoming any protection that ex¬ 

ists today. 

Regardless of the drive, into which we insert the protected disk, Clone CD always 

produces the same result, which has no relation to reality. According to its humble 

opinion, the disk contains only one session, 4.6 MB long, but the size of its single track 

is as big as 3.9 TB! Clone CD copier sees the protected disk as shown in Listing 6.6. 

Listing 6.6. Note that Clone CD has recognized only the first session, 
and, further, done it incorrectly 

INFORMATION ON THE CD IN THE DRIVE: 

Number of sessions: 1 

Disk space taken: 4726 KB 

Sectors: 2058 

Time: 00:27:33 (min:sec:frame) 

INFORMATION ON SESSION 1: 

Session size: 4726 KB 

Number of tracks: 1 

Pregap: Mode 1 data, size: 103359 KB 

Track 1: Data, size: 4294868664 KB 

Long before the completion of the copying process, we begin to doubt if the disk 

will be copied correctly. More realistically, this doubt turns into the firm certainty that 

the disk will be copied incorrectly. And, in fact, our doubts turn to be true! Let’s create 

the image of the copied disk and compare the resulting TOC to the original. 
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Listing 6.7. The image of the protected disk obtained using 
the Clone CD program (Incorrect fields are highlighted in bold) 

[CloneCD] 

Version=3 

Copier information 

Clone CD version 

[Disc] 

TocEntr±es=7 

Sessions=l 

DataTracks Scrambled=0 

CDTextLength=0 

Information about the disk 

Number of TOC entries == 7 

(in the original TOC there were 12) 

Number of sessions == 1 

(in the original TOC there were 2) 

DVD field 

No CD-Text in subcode fields of the Lead-in area 

[Session 1] 

PreGapMode=l 

PreGapSubC=0 

Session 1 information 

Track type == Mode 1 

No subchannel data 

[Entry 0] 

Session=l 

Point=0xa0 

ADR=Ox01 

Control=0x04 

TrackNo=0 

(e . g. , TOC) 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=l 

PSec=0 

PFrame=0 

PLBA=4350 

Information of the TOC entry N?0 

Entry of session 1 

Number of the first track of session 1 

in PMin/disk type in PSec 

q-Mode == 1 

Digital copy prohibited ;-) 

Track that we are currently reading — Lead-in track 

\ 
+ — Absolute address of the current track 

/ 
LBA-address of the current track 

This field must be set to zero, which is the case 

Number of the first track of session 1 

Disk type CD-DA and CD-ROM disk in Mode 1 

No useful information 

Track number represented by CloneCD 

as LBA-address, i.e., trash 

[Entry 1] 

Session=l 

Point=0xal 

ADR=Ox01 

Control=0x04 

TrackNo=0 

Information of TOC entry N?1 

Entry of session 1 

Number of the last track of session 1 in PMin 

q-Mode == 1 

Digital copy prohibited ;-) 

Track that we are currently reading — 
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AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=l 

PSec=0 

PFrame=0 

PLBA=4350 

Lead-in track (i.e., TOC) 

\ 
+ — Absolute address of the current track 

/ 
LBA-address of the current track 

This field must be equal to zero, which is the case 

Number of the last track of session 1 

(session has only one track) 

No useful information 

No useful information 

Track number represented by CloneCD as 

LBA-address, i.e., trash 

[Entry 2] 

Session=l 

Point=0xa2 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=0 

PSec=29 

PFrame=33 

PLBA=2058 

Information of TOC entry N?2 

Entry of session 1 

Position of the Lead-out area in PMin:PSec:PFrame 

q-Mode == 1 

Digital copy prohibited ;-) 

Track that we are currently reading — 

Lead-in track (i.e., TOC) 

\ 
+ — Absolute address of the current track 

/ 
LBA-address of the current track 

This field must be set to zero, which is true 

\ 
+ — Absolute address of the Lead-out 

area of session 1 

/ 

LBA-address of the Lead-out area of session 1 

[Entry 3] 

Session=l 

Point=0x01 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

Information of TOC entry N?3 

Entry of session 1 

Information of track 1 of session 1 

q-Mode == 1 

Digital copy prohibited ;-) 

Track that we are currently reading — 

Lead-in track (i.e., TOC) 

\ 
+ — Absolute address of the current track 

/ 
LBA-address of the current track 

This field must be set to zero, which is the case 
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PMin=10 

PSec=2 

PFrame=0 

PLBA=45000 

\ 
+ — Absolute address of the starting point of 

track 1 of session 1 

/ 

LBA-address of the starting point of 

track 1 of session 1 

[Entry 4] 

Session=l 

Point=0xb0 

ADR=0x05 

Control=0x04 

TrackNo=0 

AMin=2 

ASec=59 

AFrame=33 

ALBA=13308 

Zero=3 

PMin=22 

PSec=14 

PFrame=34 

PLBA=99934 

Information of the TOC entry N?4 

Entry of session 1 

Position of the next 

writable area in AMin:ASec:AFrame 

q-Mode == 1 

Data disk protected against copying ;-) 

Track that we are currently reading — 

Lead-in track (i.e., TOC) 

\ 
+ — Absolute address of the next writable area 

/ 
LBA-address of the next writable area 

Number of pointers in Mode 5 

\ 

+ — Absolute address of the maximum writable area 

/ 
LBA-address of the maximum writable area 

[Entry 5] 

Session=l 

Point=0xc0 

ADR=0x05 

Control=0x04 

TrackNo=0 

AMin=162 

ASec=200 

AFrame=224 

ALBA=294074 

Zero=0 

PMin=97 

PSec=27 

PFrame=21 

PLBA=-11604 

Information of the TOC entry N?5 

Entry of session 1 

Starting address of Lead-in area of Hybrid disk 

(if any) 

Mode 5 (Orange book) 

Data disk protected against copying ;-) 

Track that we are currently reading — 

Lead-in track (i.e., TOC) 

Recommended power of laser for 

Application code (original contained 128 here) 

Original contained 140 here 

LBA-"address" of the previous three fields 

Reserved 

\ 

+ — Absolute address of Lead-in area of Hybrid disk 

/ (address is outside the disk limits, 

i.e., no Hybrid disk) 

LBA address of Lead-in area of Hybrid 
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(computed with overflow) 

[Entry 6] ; Information of the TOC e 

Session=l ; Entry of session 1 

Point=0xcl ; Copy of ATIP information 

ADR=0x05 ; -+ 

Control=0x04 ; -+ 

TrackNo=0 ; -+ 

AMin=4 ; -+ 

ASec=192 ; -+ 

AFrame=150 ; -+- ATIP (changed!) 

ALBA=32400 ; -+ 

Zero=0 ; -+ 

PMin=0 ; -+ 

PSec=0 ; -+ 

PFrame=0 

PLBA=-150 

[TRACK 1] 

MODE=0 

INDEX 1=45000 

-+ 

The reduction of the number of sessions to one is rather embarrassing. Where 

the second, correct (!) session, has gone is unclear. And, although the incorrect data from 

the first track have been preserved, the Application code and atip fields have changed 

unexpectedly (despite the fact that these data were written to the same CD-RW disc, 

although its burning was carried out on different drives). The most surprising thing is 

that Clone CD has displayed some garbage instead of the actual address of the Lead-out 

area. According to it, the absolute Lead-out address is equal to 00:2 9:33, while the Lead- 

out of the original disk was located at position 03:24:23, and the starting address of the 

first track of the copied disk was 10:02:00. Yes! The Lead-out address proved to be lo¬ 

cated before the starting point of the first track! There you are. The copier could not 

handle the "native" disk protection, and has applied its own instead. 

The consequences are as follows: The copied disk is not usable on all drives (ASUS, 

NEC, and TEAC will read it, although they’ll see only the first session, but PHILIPS 

will refuse to recognize the disc altogether). What is more, there is nothing easier for 

the protection than to read the current TOC and compare it to the original. Because 

the TOC of the copied disk was badly damaged, it becomes only too easy to distin¬ 

guish the original from its illegal copy. 
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To put it frankly, it has all fizzled out. Well, let’s try to appeal to Alcohol 120% — 
surely it must handle this situation! In fact, Alcohol 120% views both sessions — 
correct and incorrect (Fig. 6.3). 

Alcohol 1209b - Image Making Wizard 

Welcome to the Image Maker Wizard 

Please select the source device/disc you want to copy/dump. You will see detailed 

information of the disc here. 

CD/DVD Device: 

Read Speed: 

|[G:)_NEC CD-RW NR 9100A [1:0) 

[Maximum 

3 
3 

CD Type: CD-XAfRe -Writable! 
Recordable: Yes Volume Label: 030713 1G49 
Session: 2 

T rack: 2 

Free Space: 00078011 152,4 MB (017:20:11) 
Used Space: 00021922 49,2 ME: (004:52:22) 

Session | Track Mode _| Address Length 

01 02 Mode 2 00045000 -0042942(9407.91 GB) 

02 02 

03 

Mode 1 0013458 00001715 (3.3 MB) 

P Skip reading errors 

p Fast skip error blocks (Not every device supports this function) 

p Advanced Sector Scanning (Factor: 100) 

P Read Sub-Channel Data from current disc 

P Data Position Measurement (Precision: Normal) 

Datatype: General Protected CD 0 Next > Cancel 

Fig. 6.3. Alcohol 120% views both sessions of the protected disk. 
However, the disk copy obtained using it will also be unusable 

However, for some unknown reason, it saves only the second (by comparison, re¬ 
member that Clone CD saved the first). Well, what’s the problem? As it appears, there is 
no need to compare the TOC contents — after all, the TOC of the copy is unlikely to 
contain the contents expected by the protection. Nevertheless, in contrast to pessimistic 

expectations, the TOC contents copied by Alcohol 120% correspond almost completely 
to the original. The only error made by Alcohol 120% is that it has determined the Pre- 
gap type of both tracks as Mode 2 instead of Mode 1. Still, because session 1 is missing 

from the image, the disk copy obtained using it proves to be unusable. 
During the image burning process, Alcohol 120% says: image size DOESN'T 

match the Lead-out, written in TOC! (which is the direct consequence of the 
erroneous creation of the image by Alcohol 120% itself, due to the invalid start address 
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of the first track). The address of the Lead-out area in the TOC is 03:22:23. The image 

size is 12:54:65. 

08:46:48 (G:) TEAC CD-W552E (1:1): An error occurred during the write process! 

08:46:48 Error: [05/26/00] — Invalid Field In Parameter List 

08:46:48 (G:) TEAC CD-W552E (1:1): An error occurred during the write process! 

08:46:48 Loading of the image file canceled! 

08:46:51 There were errors during the write process! View the report file 

and contact the technical support service. 

But wait! It was claimed that both Clone CD and Alcohol 120% are capable of 

copying practically all protected discs that exist at the moment. Having believed this, 
we suddenly discover that they are unable to overcome the protection mechanisms 
created by any programmer (even a beginner)! Furthermore, they are unable to over¬ 
come it separately or working in combination! At the same time, the equipment used 

in these experiments is guaranteed to ensure the correct copying of corrupted disks 
(after all, I did these tests on my own)! Consequently, the developers of both copiers 
won’t be able to use the physical limitations of the equipment being used as an excuse. 

It is hard to believe that such a primitive technique simply "blinds” the best copiers 

of protected disks. Can it really be true that the creation of disks that can virtually not 

be copied is possible on ordinary home equipment? Yes, it’s true! Of course, you 

shouldn’t confuse the impossibility of copying the disk by automatic copiers with the 

principal impossibility of obtaining its absolutely identical copy. In manual mode, the 

copying of such disks is possible (provided, of course, that your CD-RW drive sup¬ 

ports RAW DAO mode and the CD-ROM drive can read sectors from both sessions). 

In the next session, we will discuss how to achieve this. 

How to Correctly Copy a CD with an Incorrect TOC? 

Using the "Pinch of File" (or any other block file copier), HIEW, two images of the 

protected disk (one with the first session from Clone CD, and the other with the sec¬ 

ond session from Alcohol 120%), and having exercised our brain a bit, it is possible to 

re-create an identical copy of the original disk by means of combining them. However, 

this isn’t the proper way and, for a true hacker, isn’t a particularly elegant approach. 

To avoid writing a custom program for CD burning, let us limit ourselves to using 

Clone CD. Provided that the disk image supplied to Clone CD is correct, this program 
will carry out burning successfully. 

Thus, we have a more or less correct IMAGE.CCD file, containing the TOC (it can 

be taken from Alcohol 120%). However, the image file IMAGE.IMG is missing. Well, 

let’s try to obtain it. We will base it on the fact that LBA addresses for all disks are 

numbered sequentially, including the Lead-in/Lead-out area and other auxiliary stuff. 

Naturally, it is impossible to read the control disk areas directly at the sector level, 
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but this is exactly the method that we are going to use! Reading the disk sequentially, 

from first sector to the last, we will discover that sectors having LBA addresses from 0 

to 2,055 can be read without any problems. After that, there follows a ’’shadowy zone” 

of unreadable sectors, spanning up to sector 13,307. Here, the sectors are either totally 

unreadable or are returned in a severely mutated form, easily recognizable by the lack 

of a correct sync sequence in their headers. Finally, starting from address 13,308, 

reading can be continued without problems. 

It appears to be the case that we are dealing with a two-session disk, and the "shadowy 

zone" between the sessions is nothing other than the Lead-out/Lead-in areas. Adding two 

seconds for Post-gap (assuming that it was written according to the standard), we will find 

that the LBA address of the last significant sector of the first session is 2,057 or, converted 

into absolute units, — 0 minutes, 29 seconds, and 32 frames. Accordingly, the address 

of the first sector of the second session is equal to: 13308 + 150 (pre-gap) == 13458, 

or 3 minutes, 1 second, 33 frames. Of course, if the disk being investigated contains 

many errors, its analysis becomes more complicated, since physical defects at the sec¬ 

tor level may look exactly like Lead-in/Lead-out areas, provided, of course, that the 

defective areas have the appropriate length. This, fortunately, is unlikely. 

Having discarded sectors located in the pre- and Post-gap zones (e.g., 150 sectors 

from the end of the first readable area and the same number from the start of the 

next), we must unite them into a common file using any file copier (for instance, this 

may be the built-in MS-DOS copy command: copy file l /b + file_2 image.img). 

After that, it only remains to read the raw TOC using the read toc SCSI/AT API 

command (opcode: 43h, format: 2h) and write it into the IMAGE.CCD file according 

to Clone CD syntax. As an alternative, you can use the CCD file created by Alcohol 

120%, having previously corrected the Pre-gap mode (as already mentioned, Alcohol 

120% has determined it incorrectly, having confused Mode 1 with Mode 2). According 

to the standard, the sector mode is specified by 15th byte of its header (starting from 

zero). If this byte is set to 1 (which is true in our case), then the mode of this sector will 

also be 1, not 2. 

Provided that everything has been done correctly, after writing the manually 

formed disk image we’ll have a disk practically identical to the original. Is it that sim¬ 

ple? Yes, it’s as simple as that! And the procedure for writing an automatic copier 

for automating our efforts takes no more than a few hours! If reading raw sectors 

from the disks represents a problem for you, just use the source codes of the 

ASPI32.raw/SPTI.raw utilities, which carry out exactly this operation. 

Thus, corrupting the TOC isn’t a reliable mechanism for copy protection. 

It will prevent normal users with Clone CD/Alcohol 120% at their disposal from 

copying the disc. Note that, in most cases, this is all that is actually required from the 

protection mechanism. 
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An Example of Implementing Protection at the Software Level 

Now let us demonstrate how to implement this type of protection programmatically. 
The simplest thing to do is to send a command to read a raw TOC to the drive (op¬ 

code: 43h, format: 2h) and compare the result returned by this command with the pre¬ 
defined pattern. It is up to the protection (it’s its private affair), which fields that 
command will check. It is at least sufficient to check the number of sessions and the 
starting address of the corrupted track. At the maximum protection level, it is possible 

to check the entire TOC. Naturally, it is recommended to avoid a byte-by-byte com¬ 
parison of the TOC being checked with the original, since this approach implies laying 
a stake on the specific features of the drive’s firmware. The standard remains silent 
about the order, in which the TOC contents must be returned. Therefore, its binary 
representation might vary from drive to drive (although, in practice this does not hap¬ 
pen). A competently designed protection system must analyze only those fields where 
it is explicitly bound to their contents. 

The demo example provided below illustrates the technique for correct binding to 

the TOC. Naturally, explicit binding can be detected easily by a qualified hacker and 
deleted from the program as something unnecessary. Therefore, don’t blindly use this 
example in your programs. It would be much better to use the values of the TOC fields 
as working constants that are vitally important for the correct operation of your pro¬ 
gram. In this case, the resemblance of real faces to the photos in the ’’passports,” so to 
speak, won’t be so evident. Naturally, explicit checks for disk authenticity must be 
present in the program. However, the main goal here isn’t the protection of the pro¬ 
gram against cracking! On the contrary, it is informing the user that the disk being 

checked isn’t a legal copy. 

Listing 6.8. [crackme.9822C095h.c] A demo example of the simplest protection 
binding to the incorrect TOC and preventing unauthorized copying 

/*- 

* 

* crack me 9822C095h 

* A demonstration of the technique of binding to an incorrect TOC 

* For correct operation, the program 

* needs a CD burned in an appropriate way. 

* 

-*/ 

#include <stdio.h> 

#include <windows.h> 
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#include "CD.h" 

#include ’’SPTI.h” 

#include ’’ASPl32.h" 

going to check // Parameters of protected disk that we are 

//- 
#define _N_SESSION 2 

#define _TRACK 1 

#define _TRACK_IEA 0x6Bl24 

// Program parameters 

//- 
#define MAX_TRY 3 

#de fine TRY_DEIAY 100 

#define MAX_TOC_SIZE (2352) 

main(int argc, char **argv) 

{ 

long a, real_len, try = 1; 

unsigned char TOC[MAX_TOC_SIZE] ; 

unsigned char CDB[ATAPI_CDB_SIZE] ; 

// Number of sessions 

// Number of the track being checked 

// Starting LBA address of the _TRACK track 

// Max. Number of attempts at reading the TOC 

// Delay between attempts 

// Max. TOC size 

// Main variables 

// The TOC will be read here 

// SCSI CDB block for SCSI/ATAPI devices 

// TITLE 

fprintf (stderr, ’’crackme 9822C095 by Kris Kaspersky\n”) ; 

if (argc <2) 

{ 

fprintf (stderr, ’’USAGE: crackme. 9822C0 95h. exe drive\n”) ; 

fprintf(stderr, ”\tdrive — \\\\.\\X: or Trg.Lun\n”); 

return -1; 

} 

// Buffer initialization 

memset (CDB, 0, ATAPI_CDB_SIZE); mertBet(TOC, 0, MAX_TOC_SIZE) ; 

// Preparing the CDB block 

CDB[0] = 0x43; 

CDB[2] = 0x2; 

CDB[6] = 0; 

CDB [ 7 ] = HIBYTE (MAX_TOC_SIZE) ; 

CDB [ 8 ] = LOBYTE (MAX_TOC_SIZE) ; 

// READ TOC 

// RAW TOC 

// Number of the first session 

// Size... 

// ...of the buffer 

// Reading the TOC 
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while(1) 

{ 

// Sending CDB block to SCSI/ATAPI device 

a = SEND_SCSI_CMD (argv [ 1 ], CDB, ATAPI_CDB_SIZE, NO_SENSE, 

TOC, MAX_TOC_SIZE, SCSI_DATA_IN) ; 

if (a = SCSI_OK) break; // TOC successfully read, exiting 

// An error occurred. Is the drive ready? 

Sleep(TRY_DELAY); // Pausing 

if (try++ = MAX_TRY) //Is the max. number of attempts 

// exceeded? 

{ f printf(stderr, ”-ERR: can not read T0C\x7\n”); return -1;} 

} 

// TOC read, starting its analysis 

//- 

// Checking the number of sessions 

if ((TOC[3] — TOC[2]) != (_N_SESSICN-1)) 

{fprintf(stderr, ”-ERR: not original CD\n”); return -1;} 

// Checking starting LBA address of the _TRACK track 

//- 

real_len = TOC[0] *OxlOOL+TOC[1]; // Determining the actual TOC length 

for (a = 4; a < real_len; a+=ll) // Testing all entries 

{ 
if (TOC[a+3] = _TRACK) // Is this our track? 

if ((((TOC[a+4]*60L)+TOC[a+5])*75L)+TOC[a+6] != _TRACK_LBA) 

{fprintf(stderr, ”-ERR: not original LBA\n”); return -1;} 

Else 

break; 

} 

// This is original disk! 

printf (’’Hello, original CD\n”) ; 

The suggested protection is not copied by Clone CD (since it creates only one ses¬ 
sion instead of the expected two). However, it can be bypassed easily by Alcohol 120%, 
because, although it places garbage in the first session, this program quite correctly 
recreates the original TOC. 

To strengthen this protection, we can try not only to check for the existence of 
both sessions, but also check the integrity of their contents. Naturally, it is not necessary 
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to dig up each session entirely. It is enough to choose some key sectors, preferably 
having unique contents. Wait! Didn’t the author warn us about the consequences 
of a check like this? No one can guarantee that these sectors will be read on the user’s 
equipment! Well, my answer is that it is actually not recommended to rely on the 

readability of sectors. However, it is not only possible, but even recommended, 
to check the sectors that were successfully read. This means that, if key sectors cannot 

be read, everything is OK, and there is no reason to consider the disk to be an unau¬ 
thorized copy. This simply means that this effect is due to specific features of the user’s 
equipment (I mean, that it is incorrect and non-compliant with standards). It is an¬ 
other matter if the sectors were read without errors and contain something absolutely 
different than the key data. This means that the problem is caused by the disk, not by 
the equipment. 

The strengthened variant of protection cannot be copied by Alcohol 120% (in fact, 
instead of the original content of the first session, Alcohol 120% burns some horrible 
garbage onto the disc). However, it can be copied manually, according to the tech¬ 

nique described above. Furthermore, binding to an incorrect TOC can be cracked eas¬ 
ily using debugger/disassembler. How? I’ll answer this question very soon. Thus, fur¬ 
ther improvement of protection of this type is absolutely senseless. After all, we have 

already protected the disk against ordinary users. With regard to hackers, it is impos¬ 
sible to protect anything against them anyway (or, at least, not using this method). 
Either way, advanced protection mechanisms are the topic for a separate discussion. 

Complete Neutralization of the Protection 

Obtaining a workable copy of a protected disc is only half of our job. Accomplishing the 
cracking goal implies at least the recovery of the incorrect TOC and unbinding the protec¬ 
tion from the disc. In other words, it must be possible to copy a disc that has been correctly 

cracked on any equipment, using any standard copier, and without any conflicts. 
The process of removing protection usually starts with an analysis of the disc ge¬ 

ometry, in order to detect the sessions/sectors that are actually used. Incorrect sessions 
usually do not contain any useful information, because the mere fact of their existence 
is the thing that really matters for the protection. Their contents, which might even be 
unavailable on some drives, are of no importance. What methods are there for checking 
for the existence of these sections? At the hardware level, there is only one method — the 
computer sends the read toc SCSI/ATAPI command to the drive, and, in response, 
gets the full listing of the directory contents. At the software level, access to the hard¬ 
ware is most often gained using the ASPI/SPTI interface, or, less often, directly via I/O 
ports. Some types of protection prefer to work via the CD-ROM driver, considering 

this method more civilized and less dangerous. 
Anyway, a hacker usually has two options, from which to choose. The first is 

to localize the command for reading the TOC in machine code (this is usually done 
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by setting the breakpoint to the sendASPi32Command function) and then trying to re¬ 
write the program code in such a way as to ensure its correct operation with any TOC. 

The second is to intercept the CreateFile/DeviceloControl function and implant 
a spy tracing the entire flow of SCSI/ATAPI commands passing through it. In case 

when an attempt at reading the TOC of a protected disc is made, the implanted code 
would return fake data to the protection. The first approach is more reliable, and 
therefore, more practical. Let’s consider it in more detail. 

Fictitious Track in the Genuine Track 

Those who go off the deep end have a greater chance to drown. 

Folklore 

The fact that data discs are addressed exclusively at the sector level provides wider 
possibilities for playing tricks with placement of tracks — neither the drive itself nor 
the operating system pay any attention to this. However, it can confuse the over¬ 
whelming majority of copiers, including protected CD copiers that try to copy discs 
track by track, rather than sector by sector. Placing fictitious tracks in service areas that 

can’t be copied by the drive at all or are bound to little-known and rarely used struc¬ 
tures that copiers prefer to ignore is even more efficient. To begin with, however, let us 

first examine how standard tracks are organized and operate. 
For the sake of space economy, the control structures of CDs contain the mini¬ 

mum of required information, and track length is not stored anywhere explicitly. 
Roughly, it is computed by means of subtracting the starting address of the current 
track from the starting address of the next track (or the starting address of the Lead- 
out area, if the current track is the last within the session). Starting addresses are stored 
in the disc’s TOC. 

Listing 6.9. An example of a raw disc TOC with comments 

session number 

| ADR/control 

| | TNO 

I I I point 

| | | | AM:AS:AF 

I I I I I I I zero 

| | | | | | | | PM:PS:PF 

01 14 00 AO 00 00 00 00 01 00 00 Number of the 1st track of the 1st session 

01 14 00 Al 00 00 00 00 02 00 00 Number of the last track of the 1st session 

01 14 00 A2 00 00 00 00 00 ID 21 Lead-out address of the 1st session 
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01 14 00 01 00 00 00 00 00 02 00 Starting address of track Nl 

01 14 00 02 00 00 00 00 00 11 00 Starting address of track N2 

02 14 00 A0 00 00 00 00 03 00 00 Number of the 1st track of the 2nd session 

02 14 00 Al 00 00 00 00 03 00 00 Number of the last track of the 2nd session 

02 14 00 A2 00 00 00 00 03 18 17 Lead-out address of the 2nd session 

02 14 00 03 00 00 00 00 03 01 21 Starting address of track N3 

Between the end of the Lead-in area and the starting address of the 1st track of 

each session there is a so-called Pre-gap area with a length of 150 sectors, formally be¬ 
longing to the first track. According to the Red Book and Yellow Book standards (the 
basic standards for audio CDs and data CDs, respectively), this area doesn’t contain 

any useful data. On standard CDs manufactured by stamper-injection molding, this 
area is usually filled with zeroes. The type of Pre-gap area coincides with the type of its 

related track. In fact, the Pre-gap area is designed in the image and likeness of the re¬ 
lated track. This means that for tracks recorded in MODE1, MODE2 FORM1, and 
MODE2 FORM2, the Pre-gap area isn’t blank. It contains, at least, the correct sector 

headers, and, at a maximum, the sector headers, checksum, Reed-Solomon codes, and 
other control information. 

Listing 6.10. A sector from the Pre-gap area of an audio track (left) 
and data track (right) 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 FF FF FF FF FF FF FF FF FF FF 00 00 00 02 01 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 
1 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

1 
1 69 A0 A7 82 CA 8A 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 CA 65 65 BC AF D9 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 A7 5B BD 72 88 0A 92 23 00 00 00 00 00 00 

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00 00 00 3D 90 90 48 AD D8 
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Between the end of the last track and Lead-out area of each session, there is the 
Post-gap area with a length of 150 or more sectors. Formally, it belongs to the last 
track. Similar to Pre-gap, it usually doesn’t contain any data. The type of the Post-gap 
area is the same as that of the track that precedes it. 

If a track of one type is followed one of another (for example, MODE1 is changed to 
MODE2 or audio tracks are interleaved with data tracks), these tracks are separated by 
a transition area with a length of at least 350 sectors. The first 150 sectors are taken up 
by the Post-gap area of the preceding track, while the remaining 200 sectors belong to the 

extended Pre-gap area of the next track. The extended Pre-gap area comprises two parts, 
of 50 and 150 sectors, respectively. The first 50 sectors retain the type of track that pre¬ 

ceded them, while the remaining 150 sectors are from the normal Post-gap area. 
Data tracks of an identical type can be located either right beside each another or 

can be separated by transition areas. However, some copiers (Ahead Nero, in particu¬ 
lar) erroneously assume that transition areas between adjacent tracks are always pres¬ 
ent. Therefore, they skip about the last 350 sectors of each track on their own. There¬ 

fore, discs without transition areas (or with shortened transition areas) are copied 
incorrectly by these copiers, despite their full correspondence with the standard. 

Note that the sizes of the transition areas specified above are the minimum allowed 
by the standard. Their maximum length is practically unlimited. The size of the transi¬ 
tion area is not stored anywhere in an explicit form, and, in order to determine their 
boundaries, it is necessary to analyze subchannel data. To be more precise, we have to 
analyze the contents of the index field of the Q subcode channel. A zero value corre¬ 
sponds to a Pre-gap (or a pause, when dealing with audio discs), while any other value 
corresponds to the actual track sector or to the Post-gap area. Thus, the Post-gap area 
is no different from the track preceding it, and the copier cannot determine its length. 
The presence of the Post-gap can only be detected implicitly, namely, by the lack of 
information in the user data about the last sectors of the track. A properly designed 
copier should copy the contents of all of the disc sessions in their entirety, from the 
first to the last sector belonging to them, without making any attempts to analyze the 
track layout, as it can be changed arbitrarily. The addressing of data discs is carried out 
exclusively at the sector level, so the tracks are not involved at all. Therefore, the 
tweaking of their attributes is tolerated by the operating system. Unfortunately, most 
copiers (including protected-disc copiers) rely implicitly on the standard sizes of Post¬ 
gap areas, and, consequently, are very sensitive to their modifications. 

Listing 6.11. Defining the length of the Pre-gap area by subchannel data 

++- Track number 

!! ++- Index 

03CC:00 15 00 0C 01 14 01 01 00 00 03 CC 00 00 03 CC 

03CD:00 15 00 0C 01 14 01 01 00 00 03 CD 00 00 03 CD 
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03CE:00 15 00 OC 01 14 01 01 00 00 03 CE 00 00 03 CE Post-gap end of the 1st track 

03CF:00 15 00 OC 01 14 02 00 00 00 03 CF 00 00 00 96 Pre-gap start of the 2nd track 

03D0:00 15 00 OC 01 14 02 00 00 00 03 DO 00 00 00 95 

03D1:00 15 00 OC 01 14 02 00 00 00 03 Dl 00 00 00 94 

0462:00 15 00 OC 01 14 02 00 00 00 04 62 00 00 00 03 

0463:00 15 00 OC 01 14 02 00 00 00 04 63 00 00 00 02 

0464:00 15 00 OC 01 14 02 00 00 00 04 64 00 00 00 01 Pre-gap end of the 2nd track 

0465:00 15 00 OC 01 14 02 01 00 00 04 65 00 00 00 00 Start of the 2nd track 

0466:00 15 00 OC 01 14 02 01 00 00 04 66 00 00 00 01 

0467:00 15 00 OC 01 14 02 01 00 00 04 67 00 00 00 02 

In Listing 6.11, note that the second track starts from the address 4 65h, which cor¬ 
responds to the absolute address 00:11:00 (see Listing 6.9). The starting address of the 
Pre-gap is 3CFh. It is 96h (150) sectors from the starting address of the track. Conse¬ 
quently, this Pre-gap corresponds fully to the standard. 

CD-R and CD-RW discs use Pre-gap for storing an exotic and little-known data 

structure known as TDB (Track Descriptor Block). This data structure contains infor¬ 
mation about the recording mode, packet size, and so on. The standard requires that 

the track description block be burned in the batch writing mode and in the TAO 
(Track At Once) mode. Most burners (including the above-mentioned Ahead Nero), 
however, burn TDB in all available modes, including DAO. An example of a TDB 
from a disc burnt using Nero (recording of the disc was carried out in 
XAMODE2 FORM1. Therefore, the first byte of user information starts from offset 

17h instead of offset lOh, as is the case in MODE1) is shown in Listing 6.12. The TDT 
explanation is as follows: Pre-gap length — 150 sectors, this TDB relates only to the 

first track, TDT is directly followed by a single TDU, describing the current track; 
TDU is as follows: record type — continuous. 

Listing 6.12. Example of a TDB from a disc burnt using Nero 

000:00 FF FF FF FF FF FF FF FF FF FF 00 00 

010:00 00 00 00 00 00 00 00 54 44 49 01 50 

020:01 80 FF FF FF 00 00 00 00 00 00 00 00 

030:00 00 00 00 00 00 00 00 00 00 00 00 00 

040:00 00 00 00 00 00 00 00 00 00 00 00 00 

050:00 00 00 00 00 00 00 00 00 00 00 00 00 

00 05 02.4® ; sector head 

01 01 01.TDI0PQ©© ; TDT-block \ 

00 00 00.©A. ; TDU-block / TDB 

00 00 00. 
00 00 00. 
00 00 00. 

810:00 00 00 00 00 00 00 00 C3 0C 2E 82 00 00 00 00.|-?.B. ; Rc 
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820:00 00 00 00 00 00 00 00 93 78 85 F5 60 F5 F5 F5.YxEi' Ill ; E o 

830:F5 0B AA AA AA 00 00 00 00 00 00 00 00 00 00 OO.l^KKK. ; E r 

840:00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. ; D e 

850:00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. ; - c 

860:00 00 00 00 00 00 00 00 00 00 00 00 00 00 58 14.Xfl ; S t 

870:72 9B 00 00 00 00 00 00 00 00 00 00 00 00 Cl 3C.rH.||< ; O i 

880:CC F4 30 F4 F4 F4 F4 8B 55 55 55 00 00 00 00 00. |J=I0IIIIJIUUU. ; L o 

890:00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. ; O n 

8A0:00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. ; M 

8B0:00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. ; O c 

8C0:00 00 00 00 9B 18 5C 19 00 00 00 00 00 00 00 00.Ht\i. ; N o 

8D0:00 00 00 00 00 00 72 9B E5 94 71 47 E6 48 00 00.rHxOqGuH. . ; d 

8E0:D1 00 F3 15 CC F5 2B 2C Bl AF F6 51 41 80 E0 F2.=j= e§||i+, nYQAApG ; e e 

8F0:23 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00.#@. ; r s 

900:00 00 00 00 00 00 00 00 00 00 5C 19 54 03 75 4A.\iTVuJ ; r 

910:7D 50 00 00 7B 00 OC BF 93 AB D5 AD 24 2E 42 51. }P. . { ?1 yji ftt$ . BQ ; o 

920:4E 0D 6E CF 77 04 00 00 00 00 00 00 00 00 00 00.NJ>n. r 

The track descriptor block occupies one sector. It starts from the first byte of its 
user-data part and is duplicated in all sectors of the second half of the Pre-gap of this 
track. At the structure level, it comprises two parts, called TDT (Track Descriptor 
Table) and TDU (Track Descriptor Unit). 

The TDT starts with a special signature: "TDI" (54h 44h 49h), which stands for 
Track Descriptor Identification. The next two bytes store the declared length of the 
Pre-gap area, written in BCD format. The "type of Track Description Unit” field speci¬ 
fies the number of track description modules (Track Description Unit, or TDU, for 
short), starting directly after the end of the TDB block. A value set to 1 corresponds to 
the only module related to the current track. If the value is set to zero, this corre¬ 
sponds to a case where there are two modules, one directly following the other. 
The first of these describes the attributes of the preceding track, while the next track is 
specified by the second module. 

The lowest and highest track fields written in BCD format contain the minimum 
and maximum track numbers described in the current TDB, respectively, and are used 
mainly in batch writing mode to define the preferred writing mode. In all other cases, 
it is unnecessary to trace the correctness of these fields. 

The first byte of the TDU contains the BCD number of the track it describes. 
The next byte specifies the recording method and can take the following values: 

□ 00000000b: continuous recording (audio track) 

□ 10010000b: continuous recording (one packet) 
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□ 1001000 Ob: incremental recording in packets of variable length 

□ 1001000 lb: incremental recording in packets of fixed length 

The Packet size field is valid only in the mode of incremental recording in pack¬ 
ets of fixed length. In this case, it contains the packet size specified in sectors. In all 
other cases, this field must contain ff ff FFh. 

Table 6.1. The structure of a TDB terminating with one TDU 
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Most copiers of protected discs (including Alcohol 120%/Clone CD) behave 
absolutely improperly in relation to transition areas. They never copy the Pre-gap 
of the first track and do not burn it at all either (Alcohol 120%), or fill it with zeroes 
(Clone CD). All further transition areas are copied normally. 

All transition areas, with the exception of the Pre-gap or the first track of the first 
session of the disc, are freely available at the sector level and do not cause any prob¬ 
lems with regard to reading. However, the Pre-gap of the first track of the first session 
is specific. Because the logical address of the first significant disc sector is taken to be 
zero (this is the address of the first sector of the first track), the Pre-gap area that pre¬ 
cedes it lies entirely in the area of negative addresses. This does not present any diffi¬ 
culties for the read cd msf command, which receives absolute addresses as arguments. 
However, when using the read cd command, an entirely different system of address 

translation is needed (the drive refuses to understand negative LBA addresses). 
This address-translation system is described in the standard. However, developers 
of CD-copying programs do not always pay attention to it. Perhaps, they are simply 
too lazy. Who can tell? Regardless, neither of the CD copying programs reads the first 
Pre-gap. This allows us to use this area for storing key information (on replicated 

CD-R/RW discs) or binding to specific TDB (on CD-R/RW discs). 
According to the standard, the sector with the address 00:00:00 (the first Pre-gap 

sector) does not necessarily have to be read, since the drive does not have subchannel 
data yet. It must accumulate this over time. In practice, however, actual data reading 

from stampered CD-ROM and recorded CD-R discs, depending on their quality and 
on the drive model, starts approximately from second — tenth sector. Prior to these 
sectors, any attempt at reading the disc will result in an error. The situation is much 

worse with regard to rewritable discs, which often contain unreadable sectors even in 
the middle of the Pre-gap! 

Thus, to protect a CD against unauthorized copying, we can use the following 
techniques: 

□ Place adjacent tracks close to one another, without transition areas (such a disc 
can’t be copied using Ahead Nero. Alcohol 120% and Clone CD, however, suc¬ 
cessfully cope with this task). 

□ Place key information in the Pre-gap area of the first track of the disc (a disc where 
this has been done can be copied by Ahead Nero, but cannot be copied by Alcohol 120% 
or Clone CD). 

□ Create a fictitious track in the actual track or in the transition area of the natural 
track (such a disc cannot be copied by Ahead Nero. Clone CD, however, 
will copy it). 

□ Place the fictitious track in the Pre-gap of the first track (no CD-copying program 
is capable of copying such a disc). 
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Adding a fictitious track results in an incorrect length for the first track, because 
it now must be calculated by means of subtracting the starting address of the first 
(genuine) track from the starting address of the second (fictitious) track, minus the 

Post-gap size of the first track and the Pre-gap of the second (Fig. 6.4). Let’s assume 

that we have a disc with a single track (Fig. 6.4, a). After that, we add a fictitious entry 
into the TOC specifying that there is another, actually non-existent track, on the disc. 
As a result, the length of the first track will be reduced by a value equal to the 

sizeof (TRACK2) + sizeof (post-gap) + sizeof (pre-gap), and a ’’hole” equal in size 
to the sizeof (post-gap) + sizeof (pre-gap) bytes (Fig. 6.4, b) will be created between 
tracks. Such a disc will be impossible to copy using standard end-user CD copiers! 
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Fig. 6.4. Track length is determined as the difference between the starting address 
of the next track and the starting address of the current track, 

minus the size of the Post-gap area 

Since track numbers are not taken into account when addressing data discs, in¬ 
cluding Pre/Post-gap areas formed at the boundary of genuine and fictitious tracks, 
such a disc will be read normally on any equipment functioning on any operating sys¬ 
tem. However, only copiers that copy the contents of both Pre- and Post-gap will be 

able to copy it. According to the standard, copiers aren’t required to do this, because, 
from the official point of view, these areas do not contain anything of interest. Conse¬ 

quently, the copy will contain a 300-sector "hole," filled with zeroes. Such a "wound" 
can ruin any file, or even several files at once! 

The creation of fictitious tracks in buffer Post- and Pre-gap areas is even more 

promising. The length of the resulting track computed according to the following 
algorithm: PreGap_len = min (&Lead-Out, &NexTrack-150) - &MyTrack-150 becomes 
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strongly negative. This will confuse copiers like Ahead Nero, CDRWin, Blind Write 
and Alcohol 120%. At the same time, in contrast to the first three copiers, which tact¬ 

fully refuse to copy the protected disc and terminate their operation by displaying an 
error message, Alcohol 120% simply crashes. 

As for Clone CD, it can properly copy discs of this type! At first glance, this renders 

this protection mechanism absolutely senseless (who needs protection that can’t pre¬ 

vent the copying of a disc by at least one widely used and popular copier?). However, 

don’t rush to a final conclusion. Protection mechanisms are different, and among 

them there are those that can be easily copied by Alcohol 120%, but cause Clone CD 

to crash. Combining several protection mechanisms on the same disc is similar to 

amalgamating several different states (counties or principalities) into a united and 

more powerful state that is certainly more capable of resisting invasion. Taking this 

into consideration, all intentionally introduced errors involving the placing of ficti¬ 

tious tracks in Pre- and Post-gap areas represent rather promising protection technol- 

ogy, even more so that it is conflict-free. Therefore, this protection technology is likely 

to become widespread. 

Thus, the minimal task is to add another track to the IMAGE. CCD file, and correct 

all related fields accordingly. This mission, at first glance rather elementary, actually 

requires the introduction of massive changes to the file. It is, at a minimum, necessary 

to do the following: 

□ The number of TocEntries must be increased by 1. 

□ The PMin field belonging to point OAlh also must be increased by 1. 

□ A new entry specifying a false track must be added (for simplicity, you can copy 
the entry of the actual track and slightly change its starting address). 

□ The numbers of all tracks that follow must be increased by 1 (which means that all 
further points like 64h > point > OOh must be renumbered. At the same time, 
note that the disc is assumed to contain less than 63h tracks, because the maximum 
track number has a strict upper limit). 

□ The numbers of all further entries must be increased by one. 

□ If the disc contains more than one session, then the numbers of tracks and points 

AOh/Alh of further sessions must be increased by 1 (point AOh of the first session 
doesn’t have to be increased). 

□ A false track must be added into the track map, and all further tracks must be re¬ 

numbered. 

To correspond better with the standard, it would be useful to correct the subchan¬ 
nel data of the false track by increasing the values of the tno (Track Number) fields by 

one for each of them. This information is contained in the Q subcode channel, which, 
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along with all other channels, is contained in the IMAGE.SUB file. Each 
ODh + 60h * N byte of the file contains the tno field of sector N (strictly speaking, 
there is no rigid correspondence between subchannel data and sectors. Therefore, this 
formula is approximate). After introducing all of the required changes, the checksum 

of each 16-byte subchannel section must be recalculated. Otherwise, the disc being pro¬ 
tected will cease to operate. To achieve this, it is possible to use the calcSubChannelCRC 

function from the newtrf.dll library included with the Ahead Nero burner. 

Listing 6.13. An example of a subchannel data section. The field highlighted 
in bold contains the number of the current track 

0003060C: 41 02 01 00 00 06 00 03 | 01 39 63 8A 00 00 00 00_A«©.*...*©9cK_ 

If you are too lazy to mess with subchannel data, don’t do anything and leave eve¬ 
rything ”as is.” In the course of reading the data disc, track numbers are not used in 
any way. The situation is different with audio discs. On these, the tno field is used for 
indicating the track that is currently being played, and, sometimes, for switching be¬ 
tween tracks. 

On the other hand, the presence of an incorrect tno considerably strengthens disc 
protection, since not every copier is capable to copy subchannel data. Those that do 
possess this ability are few, and, moreover, they do not have this option enabled by 
default (for example, in Clone CD this option is disabled). 

Fictitious Track in the Data Area of a Genuine Track 

The simplest (and, from the compatibility point of view, the most reliable) approach is 
to place the fictitious track in the data area of a genuine track by choosing the starting 
address of the fictitious track in such a way as to ensure that the number of sectors re¬ 
maining before the starting point of the next track is no less than 350. These sectors 
will be required for Post-gap/Pre-gap (for the last track of the session, it is enough to 
have 150 sectors, since there is no need here to provide sectors for a Pre-gap). Between 
the starting address of the genuine track and starting address of the fictitious track, 
there must also be no less than 350 sectors available for the Post-gap of the genuine 
track and the Pre-gap of the fictitious track. Violation of this rule strengthens the pro¬ 
tection, but creates some side effects, which we will discuss later. 

For the moment, the main problem for us is that of how to add a new entry into 
the IMAGE.CCD without damaging its ability to operate properly. The algorithm for 
creating a fictitious track covered in detail in the previous section is a theoretical pos¬ 
sibility, but is still far from actual practice. In the course of implementing our ideas, we 
can encounter various difficulties that we’ll have to overcome or simply bypass. 
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Let’s consider the most difficult case, that is, we have a multisession disc. Profes¬ 
sional ethics oblige us to correct not only the contents of the session, to which we are 
adding a new track, but also the attributes of all other sessions. This is necessary be¬ 
cause of the pass-through numbering of all tracks on the disc. The common error 
of most beginners is renumbering all of the tracks, but forgetting to reset the pointers 

to the first and the last track of each session. As a result, the protected disc becomes 
absolutely unreadable or is read incorrectly (the specific behavior depends on the 

drive, into which the disc is inserted). 
Listing 6.14 shows a practical example of adding a new track to an existing one. 

Of course, it isn’t too illustrative (after all, a printed book lacks the illustrative capa¬ 
bilities of, for example, WinDiff utility). However, it is still better than nothing. 

The first and the third columns (filled by gray) contain the original values from the file 

being edited, while the second and the fourth columns contain the modified values. 
The modified values themselves are in bold. 

Listing 6.14. Creating a fictitious track — track 2. All changes are in bold, 
and contents of original fields is shown in odd columns 

[CloneCD] [CloneCD] 

Version=3 Version=3 

[Disc] [Disc] 

TocEntries=12 TocEntries=13 

Sessions=2 Sessions=2 

DataTracksScranfoled=0 DataTracksScranbled=0 

CDTextLength=0 CDTextLength=0 

[Session 1] [Session 1] 

PreGapMode=l PreGapMode=l 

PreGapSubC=0 PreGapSubC=0 

[Session 2] [Session 2] 

PreGapMode=l PreGapMode=l 

PreGapSubC=0 PreGapSubC=0 

[Entry 0] [Entry 0] 

Session=l Session=l 

Point=0xa0 Point=0xa0 

ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 

AMin=0 AMin=0 

[Entry 6] [Entry 7] 

Session=l Session=l 

Point=0xcl Point=0xcl 

ADR=0x05 ADR=0x05 

Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 

AMin=4 AMin=4 

ASec=120 ASec=120 

AFrame=96 AFrame=96 

ALBA=26946 ALBA=26946 

Zero=0 Zero=0 

PMin=0 PMin=0 

PSec=0 PSec=0 

PFrame=0 PFrame=0 

PLBA=-150 PLBA=-150 

[Entry 7] [Entry 8] 

Session=2 Session=2 

Point=0xa0 Point=0xa0 

ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 

AMin=0 AMin=0 
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ASec=0 ASec=0 

AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 

Zero=0 Zero=0 

PMin=l PMin=l 

PSec=0 PSec=0 

PFrame=0 PFrame=0 

PLBA=4350 PLBA=4350 

[Entry 0] [Entry 0] 

Session=l Session=l 

Point=0xa0 Point=0xa0 

ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 

AMin=0 AMin=0 

ASec=0 ASec=0 

AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 

Zero=0 Zero=0 

PMin=l PMin=l 

PSec=0 PSec=0 

PFrame=0 PFrame=0 

PLBA=4350 PLBA=4350 

[Entry 1] [Entry 1] 

Session=l Session=l 

Point=0xal Point=0xal 

ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 

AMin=0 AMin=0 

ASec=0 ASec=0 

AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 

Zero=0 Zero=0 

PMin=l PMin=2 

PSec=0 PSec=0 

PFrame=0 PFrame=0 

PLBA=4350 ELBAe=-1 

[Entry 2] [Entry 2] 

Session=l Session=l 

ASec=0 ASec=0 

AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 

Zero=0 Zero=0 

PMin=2 PMin=3 

PSec=0 PSec=0 

PFrame=0 PFrame=0 

PLBA=8850 ELBAe=-1 

[Entry 8] [Entry 9] 

Session=2 Session=2 

Point=0xal Point=0xal 

ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 

AMin=0 AMin=0 

ASec=0 ASec=0 

AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 

Zero=0 Zero=0 

PMin=2 PMirrf 

PSec=0 PSec=0 

PFrame=0 PFrame=0 

PLBA=8850 P!LBft£=-l 

[Entry 9] [Entry 10] 

Session=2 Session=2 

Point=0xa2 Point=0xa2 

ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 

AMin=0 AMin=0 

ASec=0 ASec=0 

AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 

Zero=0 Zero=0 

PMin=3 PMin=3 

PSec=24 PSec=24 

PFrame=23 PFrame=23 

PLBA=15173 PLBA=15173 

[Entry 10] [Entry 11] 

Session=2 Session=2 
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Point=0xa2 Point=0xa2 Point=0x02 Point=0x03 

ADR=0x01 ADR=0x01 ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 TrackNo=0 TrackNo=0 

AMin=0 AMin=0 AMin=0 AMin=0 

ASec=0 ASec=0 ASec=0 ASec=0 

AFrame=0 AFrame=0 AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 ALBA=-150 ALBA=-150 

Zero=0 Zero=0 Zero=0 Zero=0 

PMin=0 PMin=0 PMin=3 PMin=3 

PSec=29 PSec=29 PSec=l PSec=l 

PFrame=33 PFrame=33 PFrame=33 PFrame=33 

PLBA=2058 PLBA=2058 PLBA=13458 PLBA=13458 

[Entry 3] [Entry 3] [Entry 11] [Entry 12] 

Session=l Session=l Session=2 Session=2 

Point=0x01 Point=0x01 Point=0xb0 Point=0xb0 

ADR=0x01 ADR=0x01 ADR=0x05 ADR=0x05 

Control=0x04 Control=0x04 Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 TrackNo=0 TrackNo=0 

AMin=0 AMin=0 AMin=4 AMin=4 

ASec=0 ASec=0 ASec=54 ASec=54 

AFrame=0 AFrame=0 AFrame=23 AFrame=23 

ALBA=-150 ALBA=-150 ALBA=21923 ALBA=21923 

Zero=0 Zero=0 Zero=l Zero=l 

PMin=0 PMin=0 PMin=22 PMin=22 

PSec=2 PSec=2 PSec=14 PSec=14 

PFrame=0 PFrame=0 PFrame=34 PFrame=34 

PLBA=0 PLBA=0 PLBA=99934 PLBA=99934 

[Entry 4] [Entry 5] [Entry 6] 

Session=l Session=l Session=l 

Point=0x02 Point=0xc0 Point=0xc0 

ADR=0x01 ADR=0x05 ADR=0x05 

Control=0x04 Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 TrackNo=0 

AMin=0 AMin=162 TrackNo=0 

ASec=0 ASec=128 ASec=128 

AFrame=0 AFrame=140 AFrame=140 

ALBft£=-150 ALBA=288590 ALBA=288590 

Zero=0 Zero=0 Zero=0 

PMirrf2 PMin=97 PMin=97 

PSeo=0 PSec=27 PSec=27 
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PFrame=Q 

ELBAe=-1 

[Entry 4] [Entry 5] 

Session=l Session=l 

Point=0xb0 Point=0xb0 

ADR=0x05 ADR=0x05 

Control=0x04 Control=0x04 

TrackNo=0 TrackNo=0 

AMin=2 AMin=2 

ASec=5 9 ASec=5 9 

AFrame=33 AFrame=33 

ALBA=13308 ALBA=13308 

Zero=3 Zero=3 

PMin=22 PMin=22 

PSec=14 PSec=14 

PFrame=34 PFrame=34 

PLBA=99934 PLBA=99934 

PFrame=21 PFrame=21 

PLBA=-11604 PLBA=-11604 

[TRACK 1] [TRACK 1] 

MODE=l MODE=l 

INDEX 1=0 INDEX 1=0 

[TRACK 2] 

M0DE=1 

INDEX 1=0 

[TRACK 2] [TRACK 3] 

MODE=l MODE=l 

INDEX 1=0 INDEX 1=0 

Having saved the edited IMAGE.CCD file to the disc, burn the resulting image 
onto the CD using Clone CD or Alcohol 120%. Make sure that the protected disc is 

processed normally by the operating system and that another track has been added to 
the two existing tracks (Fig. 6.5). 

Fig. 6.5. First session contains two tracks, the first of which is quite normal 
and genuine, while the other is the fictitious track created manually 
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An attempt at copying the protected disc using standard, end-user copiers (for in¬ 
stance, Stomp Record Now! or Ahead Nero) seems to be successful at first glance. 
However, as you investigate the copy more carefully, you’ll notice that there is a "hole” 

consisting of 300 sectors filled with zeroes between the first and the second track. This 
result was predictable! User copiers understand the standard too literally. And the 
standard states that neither the Post-gap nor the Pre-gap contain any data. 

Subchannel information is also gets changed. Copiers that instead of actually 
reading the Q subcode channel of the disc being copied restore this data on their own, 
duly marking subchannel data with the ordinal numbers of their corresponding tracks, 

which allows us to easily distinguish a rough copy from the original. 

Listing 6.15. A demonstration of the changes of subchannel information 
in the course of disc copying 

# Reading the protected disc's TOC to determine the starting address of the 2nd track 

$toc TEAC 0 

00 14 01 00 00 00 00 00 

00 14 02 00 00 00 02 A3 # Starting address of the 2nd track is 2A3h, or 675 (decimal) 

00 14 03 00 00 00 34 92 

00 14 AA 00 00 00 3B 45 

# Reading subchannel data from the 2nd track of the protected disc 

$seek_and_Q TEAC 675 

seek CD-ROM & read Q-subcode by KK 

LEA - 02A3: 00 15 00 0C 01 14 01 01 00 00 02 A3 00 00 02 A3 

# TNO field of the 2nd track contains AA number one 

# Copying the disc using Ahead Nero/Easy CD Creator/Record Now! 

# or Clone CD/Alcohol without reading subchannel data 

# Reading subchannel data from the 2nd track of the copy 

$seek_and_Q TEAC 675 

seek CD-RCM & read Q-subcode by KK 

LEA - 02A3: 00 15 00 0C 01 14 02 01 00 00 02 A3 00 00 00 00 

# TNO field of the 2nd track contains AA number 2 

# Subchannel data has changed! 

Strangely enough, the MP3 file residing on the original disc is played normally, 

even if the disc is severely damaged. It only produces a gurgling sound when the dam¬ 
aged location is encountered, which, of course, is unpleasant, but can be tolerated. 
Of course, the more fictitious tracks are contained on the protected disc and the closer they 
are located to each other, the more considerable will be the difference of the unauthorized 
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copy from the original. The copy of the disc stuffed with the fictitious track — instead 
of playing music — hisses, scratches and gurgles, thus driving pirates to a form of 

madness mixed with confusion. This is the origin of the legend about inevitable quality 
degradation in the course of CD copying. Naturally, this is only true for discs con¬ 
taining MP3 files or video. Data CDs are much more vulnerable, and if the "hole" left 
by the copier matches an executable file and/or archive, this file will almost certainly 

be corrupted irrecoverably. 
Still, the strength of this form of protection is virtually insignificant. Discs of this 

type can be successfully copied by Alcohol 120% and Clone CD (provided, of course, 
that the subchannel data reading option is enabled). Apparently, these copiers ignore 
the starting addresses of the tracks altogether and read the entire readable area of each 
session from the end of the Lead-in to the beginning of the Lead-out. Hmmm! So 
much the worse for those who use this protection to complicate the copying of their 

programs. With regard to the celebrated Blind Write, it refuses to copy these discs al¬ 
together, and exits by the exception generated by "read engine." What it finds wrong 
with the fictitious track is a mystery. 

Fictitious Track in the Post-Cap of the Genuine Track 

Placing a fictitious track in the middle of a genuine one (as was shown in Fig.6.4) is not 
of much interest. It is much better to place the fictitious track entirely in the Post-gap 
area of a genuine track. In this case, all copiers will go crazy when attempting to compute 

the number of the fictitious track. Recall, that, according to the standard, the length 

of any normal track is equal to: min (&Lead-Out, &NexTrack - 150) - &MyTrack - 150. 

If the track start is located so that min (&Lead-Out, &NexTrack - 150) < (&MyTrack - 150), 

its computed length will be negative, and most copiers won’t even understand what 
to do with such a track. Furthermore, most copiers store the length of the tracks 
in variables of the unsigned long type. Therefore, a negative value with a small abso¬ 

lute value, erroneously interpreted by the processor as unsigned, will turn into a very 
large positive value. In this case, writing the "contents" of a fictitious track will require 

about 4 GB of disk space on the hard disk, and the same amount of space on the CD to 
be burnt. 

Let’s access point A2h, storing the Lead-out area address, and copy its PMin, psec and 
PFrame fields into the appropriate fields of the fictitious sector, reducing its PFrame value by 

a certain value (this technique was discussed in detail in the previous two sections). 

Fictitious Track in the Pre-Cap of a Genuine Track 

Placing a fictitious track in the Pre-gap area of the first genuine track produces rather 
interesting results, which deserve a separate chapter. At first glance, this protection 

is absolutely similar to that discussed in the preceding section, with the only difference 
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being that now the address of the first track will be changed, instead of that of the 
second track. This is, actually, only partially true! The Pre-gap of the first track is a spe¬ 

cial case. Aside from the fact that, according to the standard, it is unavailable for read¬ 
ing (although, some drives still manage to read it), the LBA address of its starting point 
is a negative number! Let’s recall that LBA addresses are related to the absolute 

addresses by the following formula: lba = ((Min * 60) + sec) * 75 + Frame - 150, 

where 150 equals to sizeof (pre-gap). 

According to the standard, the absolute starting address of the first normal track 
must be 00:02:00 (which corresponds to the LBA address Oh), and the absolute start¬ 
ing address of the first Pre-gap is 00:00:00 (which corresponds to LBA address -96h, 

or 150 in decimal notation). Even if the developer of the copier used signed variables 
for storing addresses, this doesn’t change anything, because the arguments of the read 

and read CD commands are always unsigned numbers! Moreover, placing the second 
track in the Post-gap of the first one results in the fact that the starting address of the 

second track becomes smaller than the starting address of the first track. Most copiers 
are not prepared for such a situation. 

It is impossible to copy the contents of the first Pre-gap (where the fictitious track 
resides), and, in fact, this isn’t necessary. Does, however, every copier know about it? 
If only the developers didn’t make provisions for handling such a situation, the copier, 

depending on the type of addressing that it uses, would either report a read error (ab¬ 
solute addressing), or move the head very far away to an unreal LBA address (LBA ad¬ 
dressing without checking for correctness of addresses). Another variant is that it will 

be blinded because it won’t know what to do with a negative address (LBA addressing 
with checking for address correctness). Looking a bit ahead, let’s note that only Clone 
CD is capable of coping with protection of this type (codename lackal). 

Using the IMAGE.CCD file that remained from the previous experiments, let’s 
move the starting point of the fictitious track to the 00:01:00 absolute address, 

as shown below: 

Listing 6.16. A fictitious track in the Post-gap of the genuine track, 
located by the address 00:01:00 

[Entry 4] 

Session=l 

Point=0x02 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 
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ALBA=-150 

Zero=0 

PMin=00 

PSec=01 

PFrame=0 

PLBA=-1 

When you open the modified IMAGE.CCD file, the Clone CD copier will incor¬ 
rectly compute the length of the first track (see Listing 6.17). However, this has no in¬ 
fluence on the process of burning a CD. 

Listing 6.17. Clone CD displays incorrect information about the length 
of the first track 

SESSION 1 INFORMATION: 

Session size: 4726 Kbytes 

Number of tracks: 2 

Track 1: Data Mode 1, size: 4.294.967.124 Kbytes 

Track 2: Data Mode 1, size: 4899 Kbytes 

SESSION 2 INFORMATION 2: 

Session size: 3939 Kbytes 

Number of tracks: 1 

Track 3: Data, size: 3939 Kbytes 

The check shows that the disc protected using this method is read normally in 
NEC and TEAC drives, while ASUS "sees" only the first track of the first session of the 
disk. Therefore, it is not wise to rely on the second or following sessions. It also isn’t 
safe for your reputation, because irritated users will certainly complain. 

When attempting to copy a protected disc using end-user copiers, they behave 

quite strangely. Stomp Record Now!, and Ahead Nero refuse to read the disc alto¬ 
gether, complaining of Invalid Disk and Invalid Track Mode, respectively. 

Having encountered a fictitious track in the Pre-gap area, Ahead Nero becomes 
totally disoriented, and starts to make blunders when trying to determine the disc ge¬ 
ometry (Fig. 6.9). Well, it is no wonder that the length of the first track is determined 
incorrectly. Why, however, was the copier unable to determine the attributes of all 

other tracks? The starting address of the second track, which is 3728:17:16, obviously 
specifies that Ahead Nero uses unsigned LBA addresses as a base address method, and 
converts them into MSF, when needed, on the fly. Since the unsigned LBA address of 
the starting point of the second track is a very large positive number, the difference 
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between the starting Lead-out address and the starting address of the fictitious track 
becomes negative. This reduces Ahead Nero to absolute confusion, leading it to pro¬ 
duce a catastrophically incorrect result. We can only guess the reasons why the third 

track also was determined incorrectly. Possibly, this was in some way related to the in¬ 
correct number of sessions: Ahead Nero has detected only one of the two sessions. 
Why did this happen? I suggest that you to contact technical support and inform them 
about the bugs in their program. Let them fix the bugs instead of taking on a job for 
the sake of quick and easy money. 

Fig. 6.6. Ahead Nero, having encountered a fictitious track in the Pre-gap area 
of the genuine track, becomes so confused that it cannot correctly determine 

the length of all tracks. The address of the second (fictitious) track 
is also determined incorrectly 

An attempt to scan the disc surface using the Ahead Nero CD Speed utility for 

finding damaged sectors (-Extra ScanDisk) results in the program terminating ab¬ 

normally. Tests such as CPU Usage, Spin Up/Down also stop and report an error. 

Thus, placing a fictitious track in the Post-gap of the genuine track can serve as an efficient 

means for counteracting utilities defining the disc quality, thus allowing the sale of faulty 

discs having physical defects as flawless ones. No, this is not advice to use this approach 

with this goal (actually, anyone behaving like this deserves a beating). On the contrary, 

it is statement of the sad fact that our world is far from ideal, and no information or 

individuals should be trusted. But enough lyricism. Let’s try to copy the protected disc 

using Alcohol 120%. 



Chapter 6: Anti-Copying Mechanisms 277 

If the Ignore read errors checkbox hasn’t been set beforehand, Alcohol 120% will 

interrupt the disc reading process after having read about 13%, display the unintelligi¬ 

ble error message illegal Mode For This Track, and prompt you to delete incom¬ 

plete files. Certainly, we are dealing with a trend. 

Disc reading with errors ignored doesn’t produce a desirable result either. Having 

reached sector 2056 (the next to last sector in the Post-gap of a genuine track), 

Alcohol 120% encounters the Lead-out and also stops copying. 

Fictitious Track in the Lead-Out Area 

A fictitious track located in the Lead-out area doesn’t prevent normal reading of the 

disc. It does, however, complicate the operations of end-user copiers quite seriously. 

First, the length of this fictitious track computed as the difference between the starting 

addresses of the Lead-out area and this track minus sizeof (post-gap), in this case is 

expressed by a negative value. We already know of the complications created by any 

negative value for any standard copier! Second, the contents of the Lead-out area, 

because of its unavailability at the sector level, can easily be confused with the 

bad sectors, bringing all of the possible consequence of such an error. Third, the next 

to last sector of the Post-gap area of the genuine track (conventionally called 

X-sector), for some unknown reason is not processed either by the read cd command 

or by the seek or read header commands. 

Let’s consider point A2h, which stored the address of the Lead-out area, and copy 

its values for PMin, PSec and PFrame into the corresponding fields of the fictitious sec¬ 

tor, increasing the PSec value of the latter by one or any other value that doesn’t go be¬ 

yond the Lead-out limits. 

Having skipped the traditional error message from Clone CD complaining about 

the abnormal length of the second track, burn the modified image on a CD-R/CD-RW 

disc. As in the previous example, NEC and TEAC drives ’’see” all of the available ses¬ 

sions, while ASUS notices only the first. Therefore, we can’t rely on the second or any 

further sessions. 

Copiers such as Stomp Record Now! and Ahead Nero will refuse to copy such a 

disc. The Disk Info window returned by the latter will be incorrect (Fig. 6.7). Thus, 

Ahead Nero cannot determine the mode and length of the third track. This is strange, 

because the third track has no relation to the first two and to determine its attributes, 

it is sufficient to read the TOC. 

An attempt to copy the protected disc using the Alcohol 120% doesn’t produce 

any positive results either. If the Skip read errors option was disabled, then the pro¬ 

gram will display the error message: Error: [05/64/00] - Illegal Mode For This 

Track, and the process of image creation will stop abnormally. 
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Fig. 6.7. Ahead Nero incorrectly determined the length of the second (fictitious) track. 
Strangely enough, it couldn't correctly determine the length and mode of the third track, 

which belongs to another session 

Listing 6.18. The reaction of Alcohol 120% to the fictitious track 
in the Lead-Out area (the error-skipping option is disabled) 

01:25:17 

01:25:17 

01:25:18 

01:25:18 

01:25:18 

01:25:20 

01:25:20 

01:25:20 

01:25:20 

Processor information: Pentium III (0.18 urn) 256KB OnDie L2 Cache (736MHz) 

Disc dump: (G:) TEAC CD-W552E (1:1) 

Read mode: RAW 

Source information: Session: 2, Track: 3, Length: 29.6 MB / 003:22:23 

Image file: L:\CD-hack\030713_1649.img 

Disc read error: 2048 

There was an error when creating disc dump! 

Error: [05/64/00] - Illegal Mode For This Track 

L:\CD-hack\030713_1649.ccd: Image file creation canceled! 

If the error-skipping option was enabled, the image creation seems to be successful 
(although not without a large number of bad sectors, starting from address 2058 and 
terminating with address 2172). Obviously, these sectors belong to the Pre-gap/Post- 

gap area of the fictitious track checked in vain by Alcohol 120%). 
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Listing 6.19. The Alcohol 120% reaction to a fictitious track in Lead-out 
(the error-skipping option was enabled) 

01:32:11 Processor information: Pentium III (0.18 urn) 
With 256 KB On-Die L2 Cache (736MHz) 

01:32:11 Disc dump: : (G: ) TEAC CD-W552E (1:1) 

01:32:12 Read mode: : RAW, Error skipping enabled 

01:32:12 Source information: Session: 2, Track: 3, Length: 29.6 MB / 003 

01:32:12 Writing dump file: L:\CD-hack\030713_ _1649. img 

01:32:21 Disc read error: 2056 

01:32:21 Disc read error: 2058 

01:32:21 Disc read error: 2059 

01:32:21 Disc read error: 2060 

01:32:22 Disc read error: 2169 

01:32:22 Disc read error: 2170 

01:32:22 Disc read error: 2171 

01:32:22 Disc read error: 2172 

01:32:32 L:\CD-hack\030713_1649.ccd: Image file creation completed! 

01:32:32 Disc dump completed! 

What Alcohol 120% was hoping for is a mystery. The newly-created image is useless and 
produces an error like Sector not found. Cannot read folder contents (Fig. 6.8): 

Error 

Sector not found 
Cannot read folder contents 

Fig. 6.8. Disc copied by Alcohol 120% is unreadable. When attempting to view its con¬ 
tents, the operating system displays an error message 

Clone CD, on the contrary, copies the disc without any errors, and the resulting dupli¬ 
cate is usable. However, it still differs from the original. Reading the X-sector using the 

read CD command still returns an error, but head positioning using the seek command 
and reading the header using the read header command are carried out normally (recall 
that the X-sector of the original disc couldn’t be processed by either of these commands). 

Listing 6.20. An attempt at reading the X-sector of the original disc using 
the READ CD command results in the following error: Sense Key == 3 MEDIUM 
ERROR (left), disc duplicated obtained using Clone CD behaves similarly (right) 

>cd_raw_read.exe 1.1 2056 1 >cd_raw_read.exe 1.1 2056 1 

-EER:F0 00 03 00 00 00 00 QA 00 00 00 00 11 00 -ERR:F0 00 03 00 00 00 00 QA 00 00 00 00 11 00 
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Listing 6.21. An attempt at reading the header of the original disc using 
the READ HEADER command results in the following error: Sense Key == 5 
ILLEGAL REQUEST (left), but the copy obtained using Clone CD is processed 
normally (right) 

>read. header. exe 1.1 2056 2056 >read. header. exe 1.1 2056 2056 

READ HEADER (44h) SCSI/ATAPI cotrrad demo by KK READ HEADER (44h) SCSI/ATAPI ccrrmad demo by KK 

-ERR: fO 00 05 00 00 00 00 0a 00 00 00 00 64 00 LBA:0808h —> MSF: 00: ID: IF (MODE-1 [L-EC symb]) 

Listing 6.22. An attempt at positioning on the X-sector of the original disc using 
the SEEK command with subsequent reading of subchannel information using 
the READ SUBCHANNEL command results in an interesting effect: the drive 
doesn't diagnose an error, but it also doesn't move the optical head and, after 
issuing the READ SUBCHANNEL command, it returns subchannel data from its 
previous location (left). A disc duplicate obtained using Clone CD, on the con¬ 
trary, doesn't prevent head positioning on the X-sector and returns successfully 
its subchannel data (right) 

>seek_and_Q.exe 1.1 2056 >seek_and_Q.exe 1.1 2056 

seek CD-ROM & read Q-subcode by KK seek CD-ROM & read Q-subcode by KK 

00 15 00 0C 01 14 01 01 00 00 05 83 00 00 05 83 00 15 00 0C 01 14 01 01 00 00 08 08 00 00 08 08 

Thus, placing a fictitious track in the Lead-out area, along with processing of the 
X-sector using read header and seek/read subchannel commands, allows us to dis¬ 
tinguish original disc from its copy reliably (this protection has the codename "Wolf’). 

How can we copy a disc protected using the "wolf1 protection? When writing the ed¬ 
ited image to the disc, Clone CD will display the following information on its geometry: 

Listing 6.23. Having encountered a disc with fictitious track in the Post-gap area, 
Clone CD incorrectly computes its length (in bold and gray) 

SESSION 1 INFORMATION: 

Session size: 4726 Kbytes 

Number of tracks: 2 

Track 1: Data Mode 1, size: 299397 Kbytes 

Track 2: Data Mode 1, size: 4294672626 Kbytes 

According to Clone CD, the length of the second track is 4,294,672,626 Kbytes, 

or 4 Tb\ Fortunately, this in no way prevents disc burning. If everything was done cor¬ 

rectly, the protected disc will be processed normally by the operating system. 
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ffi 
CD-ROM 

CD-Rewritable 

Total Capacity: 

Available Capacity: 

3:22.23 258MB 

17:18.11 152MB 

Sessions: 

T racks: 
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Track Start 

UPC/EAN code: 

Mount Rainier: 

Length Mode 

Disc has no MRW 
format 

B-@ CD-ROM 

B® Session 01 (?MB) 

••••ft Track 01: 0:02.00 28:58.00 (256MB1. ISO 9660 /Joliet(mode 11 

pjlliTrack 02 29:00.00 (954411:12.04 (?MBfl Data] 

IE1-® Session 02 (4MB) 

) Track 03: 3:01.33 0:22.65 (4MB), ISO 3660 / Joliet (mode 1) 

| G: TEAC CD-W552E (ID:1 HA:2) 3 
Eject Refresh OK ) 

Fig. 6.9. Information displayed by Ahead Nero when analyzing the geometry 
of the protected disc. A monstrous error in determining the length 

of the fictitious track prevents it from being copied normally 

Fig. 6.10. CDRWin refuses to determine the type of the fictitious track 
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As for Ahead Nero (and the overwhelming majority of other copiers), it will be¬ 
have differently. It will refuse to process a fictitious track and stop abnormally, re¬ 
turning an error message such as illegal track mode or something of the sort. 

The CDRWin copier, for some unknown reason, refuses to determine the type of 

fictitious track (although the track type is written explicitly in the headers of each of its 
sectors) and prevents it from being selected. Without being selected, the track cannot be 
retrieved. Retrieval of the first (normal) track is also interrupted by an error message. 

Now, let’s try to copy the protected disc using Alcohol 120%. If the Skip errors option 

was not set beforehand, Alcohol 120% will display the illegal Mode for this track 

error message and interrupt the disc reading at the very beginning of image creation: 

Listing 6.24. Alcohol 120% without skipping errors 

02:40:38 Information on the processor: Pentium III (0.18um) 256KB QnDie L2Cache (736MHz) 

02:40:38 Disc dump: (G:) TEAC CD-W552E (1:1) 

02:40:46 Read mode: RAW 

02:40:46 Source information: Session: 2, Track: 3, Length: 29.6 MB / 003:22:23 

02:40:53 Image file: L:\CD-hack\030713_1649.img 

02:40:58 Disc read error: 2048 

02:40:58 An error has occurred in the course of dump creation! 

02:40:58 Error: [05/64/00] - Illegal Mode For This Track 

02:40:58 L:\CD-hack\030713_1649.ccd: Writing image file was cancelled! 

Well, let’s set the Skip read errors checkbox and try to copy the protected disc once 

again. Having reached the X-sector (with the LBA address of 2056), Alcohol 120% 
will display a read error message and bump into the Lead-out area, pouring out 

a bunch of bad sectors. Having reached 100 percent, for some unknown reason it con¬ 
tinues the reading process. Then, most likely to make sure that the user gets the point, 

it locks the Cancel button and freezes. To be more accurate, it doesn’t freeze com¬ 

pletely, since it continues to pour out the bad sectors. It is impossible to stop this al¬ 

coholic-induced brawl. Anybody who likes to talk about ’’programming culture” 
should stop and take a look at this raging alcoholic! 

Listing 6.25. Alcohol 120% with error-skipping enabled. Having reached 100 per¬ 
cent, it freezes, but continues to report bad sectors 

09:52:22 Information on the processor: Pentium III (0.18 um) 256KB QnDie L2 Cache (736MHz) 

09:52:22 Disc dump: (G:) TEAC CD-W552E (1:1) 

09:52:29 Read mode: RAW , Read error skipping enabled 

09:52:29 Source information: Session: 2, Track: 3, Length: 29.6 MB / 003:22:23 

09:52:38 Disc read error: 0 
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09:52:39 Image file: L:\CD-hack\030713_1649.img 

09:52:53 Disc read error: 2056 

09:52:57 Disc read error: 2057 

09:52:57 Disc read error: 2058 

09:53:01 Disc read error: 2707 

09:53:01 L:\CD-hack\030713_1649.ccd: Image file cancelled! 

09:53:01 Disc dump cancelled! 

The third attempt to copy the protected disc begins with the restarting Alcohol 

120% and setting the Fast bad block skipping option. This time, Alcohol 120% does 

not freeze... but it doesn’t copy either, refusing to read the entire disc. According to 
the Alcohol 120%, the bad sectors begin with the first (i.e., zero) LBA address and 
continue up to the last. Wonderful, isn’t it? 

Listing 6.26. Alcohol 120% with fast error skipping 

02:52:18 Processor information: Pentium III (0.18 um) With 256 KB Qn-Die L2 Cache (736MHz) 

02:52:18 Disc dump: (G:) TEAC CD-W552E (1:1) 

02:52:25 Read mode: RAW , Fast skipping of bad sectors 

02:52:25 Source information: Session: 2, Track: 3, Length: 29.6 MB / 003:22:23 

02:52:25 Disc read error: 0 

02:52:26 Disc read error: 1 

02:52:26 Disc read error: 2 

02:52:26 Disc read error: 3 

Fictitious Track Coinciding with the Genuine Track 

Creating a fictitious track combined with the genuine track results in the length of the 

first track becoming zero. Why does it become zero instead of a negative number? After 

all, the length of the genuine track is this case is: &Track2 - &Trackl - sizeof (post¬ 

gap) - sizeof (pre-gap), which, in actual values appears as follows: 00:02:00 - 

00:02:00 - 00:02:00 - 00:02:00 == -00: 04 : 00, or -300 in LBA addresses. 

The point is that address 00:02:00 is special. The track starting from this address 

doesn’t have a Pre-gap (or, to be more precise, doesn’t allow us to process its Pre-gap 

in a normal manner). Therefore, the actual length of such track is computed in a spe¬ 

cial branch of the program, which is clever enough not to subtract sizeof (post-gap) 

from zero. The particular features of operation of individual copiers are not of interest 

for the moment. It is enough to know that most of them compute the length of the 

first and all further tracks correctly (although, this doesn’t solve all of our problems 

with regard to copying protected discs). 



284 Part III: Protection against Unauthorized Copying and Data Recovery 

Introducing an X-sector into the genuine track (see "Jackal") results in the follow¬ 
ing side effect: an attempt to read the X-sector using the read cd command returns an 

error, the positioning of the head to the X-sector using the seek command is carried 
out without errors; without, however, moving the head itself. Reading the header of 
the X-sector using the read header command once again returns an error. Running a 

few steps forward, note that the disc copy obtained using Clone CD reads the header 
and positions the head without errors (and the head actually moves), thanks to which 
the duplicate can easily be distinguished from the original. 

When opening the original image of the protected disc, Clone CD finds only the 

second (fictitious) track in the first session, and refuses to detect the genuine track (see 
Listing 6.27). Fortunately, disc burning is carried out successfully despite this fact. 

Listing 6.27. Clone CDs reaction to a fictitious track coinciding with 
the genuine track 

SESSION 1 INFORMATION: 

Session size: 4726 Kbytes 

Number of tracks: 2 

Track 2: Data Mode 1, size: 4726 Kbytes 

SESSION 2 INFORMATION: 

Session size: 3939 Kbytes 

Number of tracks: 1 

Track 3: Data Mode 1, size: 3939 Kbytes 

Viewing the disc geometry confirms the existence of two tracks with the same 
starting addresses, the length of the first track actually being equal to zero instead of a 
negative number (Fig. 6.11). What’s even more interesting is that the type of the first 
track is determined to be "ISO 9660/Joliet", which, to put it mildly, is very far from the 
truth. The identifier of the ISO 9660 file system is contained in the 16th sector of the 
track, and Joliet in the 17th sector. Provided that the track length is equal to zero 
(which is true), a natural question arises: What relation is there between these sectors 
and the first track? It seems to me that the file system identification procedure doesn’t 
check the range of available addresses at all... 

NEC and TEAC drives were smart enough to read such a disc. ASUS, on the con¬ 
trary, was able to see only the first session. Consequently, you should not rely on the 
second or all following sessions. 

An attempt to copy the protected disc using Alcohol 120%, according to tradition, 

fails (if the Skip read errors mode is not enabled, Alcohol will refuse to copy the disc 
at all, and if this mode is enabled, it will bump into the Lead-out, fall into an endless 
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loop, and cannot be terminated by any other method than killing the process). 
Clone CD, as was mentioned before, processes the fictitious track normally. However, 
it removes the "Jackal" from the Post-gap, as a result of which the duplicate can be eas¬ 
ily distinguished from the original. 

Fig. 6.11. The first and the second tracks have identical starting addresses and, 
as a result, the length of the first track turns to zero 

Invalidating Track Numbering 
According to the ECMA-130 standard, information tracks must be numbered sequen¬ 

tially, starting from 1 and finishing with the last track of the disc ("Track Numbers 01 to 

99 shall be those of the Information Tracks in the User Data area. Consecutive Informa¬ 
tion Tracks shall be numbered consecutively. The first Information Track of the user Data 

area of a disk shall have Track Number 01"). The common sense possessed by hardware 
and software developers leads them to hold the same opinion. Therefore, there is 
agreement that every operating system can rely on track number one being followed 
either by track number two or by the Lead-out (track number AAh). However, track 
numbering can easily be modified so that the first track is followed either by, for in¬ 
stance, track number 9, or even by another track "number 1"! 

Tests have shown that the vast majority of drives and copiers react inadequately to 
modified track numbering. Sometimes, they refuse to recognize such discs at all. 
Sometimes, they display the data track as audio. No wonder the copying of modified 
discs of this type causes serious problems. Even advanced tools like Clone CD and 



286 Part III: Protection against Unauthorized Copying and Data Recovery 

Alcohol 120% are unable to grasp the numbering of the protected disc. Consequently, 
the copies are either horribly disfigured or completely unusable. 

Theoretically, a disc with invalid track numbering should be copied without prob¬ 
lems, because track numbers are not considered in absolute addressing. Thus, when 
working with the disc at the sector level, it is enough to read the entire contents of the 
disc from the first readable sector to the last, without even suspecting of the existence 
of tracks. In practice, however, the situation is different, and the vast majority of copi¬ 
ers copy discs by tracks, not sectors. At the same time, algorithms used for TOC 
analysis are horribly stupid and can’t even handle obvious errors. Any deviations of 
the track numbering from the norm can be successfully written to the disc using 
Clone CD (except for the track starting from number zero. More details on this topic 
will be provided later). However, to read a disc invalidated in this way, a more ad¬ 
vanced program might be required. Of all the programs I know of, only my own cop¬ 
ier is capable of doing this (or a manual disc copying at the sector level). Therefore, 
this technique is very effective for CD protection! 

In order to ensure that the protected disc doesn’t cause any conflicts with the equip¬ 
ment of legal users, it is necessary to proceed very carefully. Never change the numbering 
of the tracks of the first session, because this often renders the disc absolutely unreadable 
(more details on this topic will also be provided later). A pleasant exception is the crea¬ 
tion of a fictitious track with the number of the genuine track. Protection in this form 
doesn’t conflict with any equipment that I have at my disposal. For all appearances, it 
shouldn’t conflict with any equipment at all. I can’t, however, say with 100-percent cer¬ 
tainty that this is actually the case. The numbering of the tracks of the second session can 
be changed more or less painlessly. In the worst case, the drive simply won’t see the 
tracks of the second session, The first session, however, will be fully available. 

To change the track numbering, it is enough to change the number of the point cor¬ 
responding to the original number of the track that you are going to change and correct 
the value of the PMin field of point Alh, which stores the number of the last disc track 
(if we do not do this, we will end up with protection of the Incorrect last track number 

type). It is also necessary to change the track’s layout, which is contained in the end of the 
CCD file. The following example demonstrates how to create a gap between the first and 
the third tracks by increasing the number of the latter from three to nine: 

Listing 6.28. Creating a gap between the second and the third track. 
Odd columns, filled with gray, contain the original contents of the CCD file. 
Even columns show the modified values (modifications are in bold) 

[Entry 8] [Entry 8] [Entry 11] [Entry 11] [TRACK 1] [TRACK 1] 

Session=2 Session=2 Session=2 Session=2 MODE=l 

Point=0xal Point=0xal Point=0x03 Point^Gx09 INDEX 1=0 INDEX 1=0 

ADR=0x01 ADR=0x01 ADR=0x01 ADR=0x01 

MDDE=1 
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Con- 

trol=0x04 

Con- 

trol=0x04 

Con- 

trol=0x04 

Con- 

trol=0x04 

[TRACK 2] [TRACK 2] 

TrackNo=0 TrackNo=0 TrackNo=0 TrackNo=0 MODE=l MDDE=1 

AMin=0 AMin=0 AMin=0 AMin=0 INDEX 1=0 INDEX 1=0 

ASec=0 ASec=0 ASec=0 ASec=0 

AErame=0 AFrame=0 AErame=0 AFrame=0 [TRACK 3] [TRACK 9] 

ALBA=-150 ALBflF=-150 ALBA=-150 ALBflF=-150 MODE=l MDDE=1 

Zero=0 Zero=0 Zero=0 Zero=0 INDEX 1=0 INDEX 1=0 

PMin=3 EMin=9 PMin=3 PMin=3 

PSec=0 PSec^O PSec=l PSec=l 

PErame=0 PFrame=0 PErame=33 PFrame=33 

PLBA=8850 PLBA=-1 PLBfl^l3458 PLBA=13458 

Because most data CDs have only one track per session, to renumber tracks within 
the limits of one session, it is necessary to create a fictitious track within the genuine 

track. This technique was already covered above. 

Incorrect Starting Number for the First Track 

Changing the starting number of the first track is a strong and honest-enough method 
of protection. The vast majority of drives reliably recognize discs, in which track num¬ 
bering starts from a number other than one. For instance, let us assume that the disc 
starts from track number two... 

Let’s return to the original image of the disc being protected and edit the 
IMAGE. CCD by shifting numbers of all of the tracks by one, without forgetting that 

the numbers of the first and the last track of each session are stored in points OxAO 

and OxAl, respectively. For proper disc protection, they also must be modified. 

Listing 6.29. Changing the number of the first track. Original values are 
in the columns marked in black, while modified values are shown 
in the columns marked in gray. The modified values are set out in bold 
and marked with arrows. 

[Entry 0] 

Sessional 

Point=0xa0 

EMan=2 

PSec=0 

PErame=0 

I 
EMin=l =i 

[Entry 1] 

Sessional 

Point=0xal 

EMm=2 

PSec=0 

PErame=0 

[Entry 3] 

Sessional 

Rnnfc=Gx2 

PMm=0 

PSec=2 

PErame=0 
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Listing 6.30. Changing the number of the second track 

[Entry 7] 

Session=2 

Point=0xa0 

EMan=3 

PSec=0 

PErame=0 

[Entry 8] 

Session=2 

Point=0xal 

EMan=3 

PSec=0 

PErame=0 

[Entry 10] 

Session=2 

Boant=Qx2 

PMin=0 

PSec=2 

PErame=0 

Listing 6.31. Changing the map 

[TRACK 1] | [TRACK 2] 

tfODE=l 

■INDEX 1=0 

[TRACK 2] [TRACK 3] 

ODE=l 

IlNDEX 1=0 

Let’s write the modified image to the disc (Attention: the Do not restore subchannel 

data option in the profile parameters must be set. Otherwise, the data on the track num¬ 

ber in the Q subcode channel won’t correspond to the TOC, which will have a negative 
effect on the compatibility). The recorder produces a nice protected disc, in which track 
numbering starts with 2 (Fig. 6.12). Drives like ASUS or TEAC will show all its tracks and 
display the disc TOC normally, using the operating system’s built-in tools. Even more so, 
they will agree to work with protection at the sector level without any doubts. However, 
NEC fails to work with such a disc, because after the first attempts at access (regardless of 
whether or not this attempt was undertaken at the sector level), the drive issues low 
clicking sounds and falls into a stupor that can be interrupted only by the EJECT button. 
Alas, but protection mechanisms of this type are characterized by compatibility with 
non-standard equipment, which is very far from perfect. 

Now let’s see how well this mechanism protects against copying. Standard copiers, 
such as Stomp Record Now! and Ahead Nero, refuse to view this disc as a proper one, 
and won’t even try to start copying! Alcohol 120%, because of some internal error, sim¬ 
ply spits out message about a critical access error and passes into another world, refusing 
to react to the keyboard or mouse. Clone CD, on the other hand, copies such a disc quite 
successfully (although, for some unknown reason, it skips point OxCl, which stores the 
ATIP copy. This circumstance can easily be used for binding to the original disc). 

The fact that this protection cannot be copied by current versions of Alcohol 120% 
is no cause for feelings of self-satisfaction, because in this case, we are dealing with an 
annoying programming error, and not with a conceptual architectural limitation on 
the part of the copier. This error might be fixed any moment, meaning that our pro¬ 
tection would no longer perform its function. To strengthen this protection, we will 
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have to wander considerable distance from the letter of the law in the standard. To do 
this, we will have to create a mismatch between the number of each track and the 
numbers of points OxAO and OxAl. Let points OxAO/OxAl of the first session point to 
1, and points OxAO/OxAl of the second session to 2, while the numbering of the tracks 
themselves starts with 2. 

Fig. 6.12. Track numbering starts from 2 

At the higher level, no drive of which I am aware is able to read such a disc (even ASUS 
can only see the first session). It is, however, still possible to work with it at the sector level 
(except for on the NEC drive). Therefore, this method of protection is only suitable for 
two-disc programs, in which the first disc is a normal one, the second disc is protected, and 
the data contained on it are read directly by applications at the sector level. 

Protected CD copiers cannot bypass this kind of protection: Both Alcohol 120% 
and Clone CD interpret the disc as being absolutely empty. Alcohol 120% doesn’t see 
any of the sessions, while Clone CD admits that: 

INFORMATION ON THE CD IN DRIVE: 

No information on the CD is available. Disc empty? 

However, we know that the disc is not blank! Its copying must be possible. Pro¬ 
vided that the drive you are using supports discs of this type, it is enough to analyze 

the TOC, which, as was mentioned several times before, can be read using the 
read toc (opcode: 0x43; format 0x2) command and grab the contents of all of the 
tracks at the sector level. After this, all that remains is to form the image for disc 
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burning. In fact, it is quite surprising that protected-CD copiers are still unable to copy 
these discs automatically. There is really nothing too difficult here. 

Two Identical Tracks 

This is a reliable, easy-to-implement protection mechanism that is compatible with 
practically all equipment. At the same time, this protection is quite elegant. All we need 
to do is change the number of the second track to one. As a result, the disc will contain 
two tracks with identical numbers but absolutely different contents (do not forget to cor¬ 
rect the points OxAO / OxAl and forcibly disable the recovery of subchannel data). 

The protected disc can be read normally on all drives known to me. It cannot, 
however, be copied by any of the copiers available to me (except, naturally, for those 
that I wrote myself). The first two tracks look quite strange (Fig. 6.13) and do not cre¬ 
ate any problems for the drive itself or for the operating system. The drive firmware 
usually searches only for the first track (which, according to the naive assumptions by 
some developers, always bears the number 1), and ignores the numbers of all other 
tracks. The operating system (or, to be more precise, the file system of CDs) also ad¬ 
dresses tracks by absolute sector addresses instead of track numbers. Therefore, the 
numbers of all tracks, except for the first ones, fall out of touch with the operating 
system. Naturally, all of the above-mentioned relates only to data discs. 

Fig. 6.13. Protected disc containing two tracks with the number one 

In theory, copying such discs shouldn’t cause any problems. Actually, the track 
contents are wonderfully readable at the sector level and track numbers do not take 
part in absolute addressing. Therefore, a well-designed copier has only to read 
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the TOC and retrieve the contents of all its tracks without taking into account their 

numbers. Of course, if a short-sighted developer has decided to place the data of track N 
of the array with index N, then the presence of two (or more) tracks with identical 

numbers will break this weak algorithm easily. 
Standard copiers refuse to copy discs of this sort, displaying the error messages. 

Alcohol 120% correctly analyzes the disc geometry (see the listing below), but, even in 
this case, two problems still remain. 

Listing 6.32. The data on the protected disc (left) and data on the disc image 
created by Alcohol 120% (right) 

IMAGE FILE INFORMATION: 

Sessions: 2 

Used space: 34850 Kbytes 

Sectors: 15173 

Time: 03:22:23 (Min:Sec:Frames) 

SESSION 1 INFORMATION: 

Session size: 4726 Kbytes 

Tracks: 1 

Track 1: Data Mode 1, size: 4726 Kbytes 

SESSION 2 INFORMATION: 

Session size: 3939 Kbytes 

Tracks: 1 

Track 1: Data Mode 1, size: 3939 Kbytes 

IMAGE FILE INFORMATION: 

Sessions: 2 

Used space: 34850 Kbytes 

Sectors: 15173 

Time: 03:22:23 (Min:Sec:Frames) 

SESSION 1 INFORMATION: 

Session size: 4726 Kbytes 

Tracks: 1 

Track 1: Data Mode 1, size: 4726 Kbytes 

SESSION 2 INFORMATION: 

Session size: 3939 Kbytes 

Tracks: 1 

Track 1: Data Mode 1, size: 3939 Kbytes 

First, the map of tracks created by Alcohol 120% contains errors all over it, so it 
turns out to be a horrible blunder. Instead of two tracks, Alcohol 120% has placed 
only one track, but, at the same time, duplicated indexes, making a mess of their num¬ 

bers and values. 

Listing 6.33. A map of the protected disc tracks (left) and disc map created 
by Alcohol 120% (right) 

[TRACK 1] [TRACK 1] 

MODE=l MODE=l 

INDEX 1=0 INDEX 0=-13608 

INDEX 1=-13458 

[TRACK 1] 

MODE=l 

INDEX 1=0 
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Second, the burning of the protected disc image is carried out in unusual way. 
The progress indicator, having reached the 100-percent mark, doesn’t stop. Instead of 
this, it continues its steady advance. Then, as if it has suddenly recalled something, Al¬ 
cohol 120% resets the progress to zero, and restarts the burning process (probably, be¬ 
cause it is beginning to process the second track number 1). When this process comes 
close to its end, the drive starts to produce some lamentable sounds. Nevertheless, the 

burning process is completed without errors. An attempt, however, to read the TOC 
of the burnt disc freezes the drive and causes it to produce an entire symphony of 
squeaking sounds. To put it simply, Alcohol 120% in this case produces a 120% failure. 

Clone CD already begins producing absolute garbage at the stage of analyzing the 

protected disc, losing both the second track and its session. Besides this, for some 
unknown reason, Clone CD reduces the size of used disc space by 3 Kbytes 
(30,911 Kbytes instead of 34,850 Kbytes), reducing the number of sectors accordingly. 
Despite the fact that the protected CD uses all 15,173 sectors, Clone CD sees only 
13,458. Where the remaining 1,688 sectors are is a mystery. Note that this information 

is received by means of TOC analysis, which reported the original size and original 
number of sectors honestly! And, besides this, the disc size has not been reduced by 
the size of the lost track (this, after all, has a reasonable explanation)! On the contrary, 
the disc size has been reduced by an absolutely arbitrary value! See for yourself... 

Listing 6.34. The data for the protected disc (left) and information taken from its 
image created by Clone CD (right) 

INFORMATION ON THE CD IN THE DRIVE: 

Sessions: 2 

Used space: 34850 Kbytes 

Sectors: 15173 

Time: 03:22:23 (Min:Sec:Frame) 

INFORMATION ABOUT SESSION 1: 

Session size: 4726 Kbytes 

Tracks: 1 

Track 1: Data 1, size: 4726 Kbytes 

INFORMATION ON SESSION 2: 

Session size: 3939 Kbytes 

Tracks: 1 

Track 1: Data Mode 1, size: 3939 Kbytes 

INFORMATION ON THE IMAGE FILE 

Sessions: 1 

Used space: 30911 Kbytes 

Sectors: 13458 

Time: 02:59:33 (Min:Sec:Frame) 

INFORMATION ABOUT SESSION 1: 

Sessions size: 30911 Kbytes 

Tracks: 1 

Track l:Data Mode 1, size:30911 Kbytes 

This is nothing, however, compared with what is to come. When attempting 
to copy the disc, Clone CD actually reads the first 15 percent, and then encounters 
a vast array of unreadable (from its viewpoint) sectors. The starting point of this array 
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(or, so to speak, an entire continent of unknown lands) matches exactly the Lead-out 

address, written directly and openly in the TOC. Why in the world did Clone CD need 
to read the Lead-out? An hour goes by, and then another, but Clone CD continues on 
with its vain attempt to read the unreadable Lead-out sectors and is unlikely to give up 
on this total waste of time. 

Well! Neither Clone CD, nor Alcohol 120% managed to bypass the disc protec¬ 
tion. However, what if we use them in combination? Perhaps this symbiosis will pro¬ 
duce at least something? Recall that Alcohol 120% has successfully produced a correct 
image of the CD to be copied. It only failed with burning this image on a CD. 
Clone CD, on the contrary, burns these images with enthusiasm (after all, it was Clone 
CD that we used to created this protected disc), but fails to create a correct disc image. 
What if we create the disc image using Alcohol 120% and pass it furtively to Clone CD 
for burning? When doing so, it is necessary to remember to correct the track map to 
the original version, which, because of its simplicity, can be restored easily. You can 
skip this, however, because the attempt will fail anyway. Clone CD will certainly burn 
the image created by Alcohol 120%, but reading is a different matter. After dragging 
the head for a long time, accompanied by the strained roar of the motors, the drive 
will display only the contents of the first session. Where, you might ask, is the second? 
To understand this, it is enough to view the image file formed by Alcohol 120%. 
A byte-by-byte comparison of the sectors of both tracks shows that their contents are 
identical, which means that the second track overwrites the first! 

Thus, the suggested protection actually cannot be copied by the most common 
protected-CD copiers. This doesn’t, however, mean that it cannot, in principle, be 
copied. Actually, copying here is possible! To do this, let’s use any of the available 
utilities or reading sectors at the raw level. Proceeding this way, retrieve the contents of 
the second track and write it into the image file (to find the starting point of the second 
track, analyze the absolute addresses in its header). Just open the file in any HEX editor 
and find the following sequence: ”oo ff ff ff ff ff ff ff ff ff ff 00 00 02 00”, 
i.e., the sync group plus address of the first sector (00:02:00). Note that the first oc¬ 
currence will correspond to the first track, while the second occurrence will corre¬ 
spond to the second track overwritten by the first. 

The check shows that the copied disc is absolutely usable this time. Therefore, the 
protection mechanism is not as strong as the developers of licensed programs would 
like to believe. Nevertheless, this protection is strong enough for the users armed with 
typical hacking tools. Because its compatibility with various equipment is rather good, 
it may become rather popular with time. 

Incorrect Number for the Last Track 

Most drives are oversensitive to an incorrect number for the last track (the Alh 

pointer in TOC). This protection technique, therefore, is only of interest from an aca¬ 
demic point of view. From the practical point of view, it is of little interest (and it is 
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not recommended to protect your discs in this way). Nevertheless, provided that the 
necessary precautions have been observed, this technique can still be used. 

Open the IMAGE.CCD file mentioned above, find the Point=0xAl string located in 
session 1, and change the PMin field from 1 to 2. Thus, you’ll make the drive consider 
the number of the last track of the first session to be equal to 2 instead of 1, as is the 
case in reality. 

[Entry 1] [Entry 1] 

Session=l Session=l 

Point=0xal Point=0xal 

PMin=l PMin=2 

PSec=0 PSec=0 

PFrame=0 PFrame=0 

After burning the changed image on a CD, Clone CD will produce correct infor¬ 
mation about the track number, which serves as an indirect indication that it doesn’t 
analyze the values of the Alh pointer, and that the number of the last track is deter¬ 

mined by means of analyzing the Olh — 99h pointers. The last encountered pointer 
will be the last track number in the current session (Attention: The point with the larg¬ 
est number is not necessarily the last track, because track numbering can be intention¬ 

ally modified in order to complicate disc copying). 
A disc protected in such a way (or, to be more precise, disfigured in such a way) 

displays only its first session when it is read on the ASUS drive. NEC sees both tracks. 
However, because of the rich imagination of its electronic circuitry, it erroneously de¬ 
termines their type as AUDIO. The fact that, all the same, it refuses to play this as 
audio denies us the pleasure of hearing a unique symphony of noise and grinding. 
The TEAC drive doesn’t recognize the disc at all. In brief, it appears that the firmware 
of most drives behaves differently from Clone CD. Instead of counting the tracks, 
it reads the contents of the Alh pointer directly. If this pointer is incorrect, the drive 
begins to behave inadequately. In general, this form of protection is poor, so we won’t 
consider it further. 

Most drives, however, are much more tolerant to an incorrect number for the last 

track of the second session (which means that the disfigured second session doesn’t 
prevent the first session from being read). Let’s try an experiment. Open the original 
copy of the IMAGE.CCD file and perform the following ’’surgery” on it: Change the 

contents of the PMin field belonging to point Alh of the second session from 2 to 1, 
thus attempting to assure the drive that the number of the last track of the second ses¬ 
sion terminates with 1 (although you can choose any other value, for instance, 3 or 8): 

[Entry 8] [Entry 8] 

Session=2 Session=2 
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Point=0xal Point=0xal 

PMin=2 PMin=l 

PSec=0 PSec=0 

PFrame=0 PFrame=0 

ASUS and TEAC drives display only the first session of the disc, while the second ses¬ 

sion is not available even at the sector level. The NEC drive also sees only the first session. 

It, however, kindly allows us to read the second session at the sector level. Nevertheless, you 

should not rely on this kindness, because most drives are not as generous as NEC. 

Let’s try to copy the protected disc, previously having studied its geometry using 

a suitable program (Ahead Nero, for example). As shown in Fig. 6.14, Nero sees both 

tracks. However, the second, incorrect, track is interpreted as absolutely empty (which, 

by the way, is not too far from truth, because this track is not available at the sector 

level). An attempt to copy this disc using Nero results only in the copying of the first 

session. Although a disc copied in such a way is, formally, usable, the protection still 

can detect the forgery by means of elementary TOC analysis. It is enough to check the 

number of sessions present on the disc and the attributes of the second track. Natu¬ 

rally, they won’t match for the copy produced by Nero. 

Fig. 6.14. Nero's response to the incorrect number of the last track 

Clone CD also fails to copy such a CD. First, it becomes unable to recognize the 

session limits correctly, and, when the end of the first session is reached, obstinately 

tries to read the Lead-out contents at the sector level. Of course, the process of ’’grinding” 
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defective sectors is relatively fast, so the user won’t have time to get bored. Naturally, 

the second session is not copied, and Clone CD corrects the TOC by removing any 

mention of the second session. As a result, the TOC of the copied disc will be radically 

different from that of the original. Therefore, the protection mechanism won’t have to 

expend a significant effort to detect the unauthorized copy. Alcohol 120% also copies 

only the first session. 

Is it possible to copy such a disc manually? Of course! It is enough to create an ex¬ 

act copy of the original TOC without introducing any changes, and burn the contents 

of the first session to the CD. 

Gap in Track Numbering of the First Session 

We will cover this flaky protection mechanism only theoretically — just in case you 

encounter a disc, on which the first session has been broken by some morally depraved 

person, and because of the conflict with your equipment, it is read incorrectly 

(or, more probably, is absolutely unreadable). The criminal codes of most countries 

contain clauses covering acts of sabotage to cover occurrences of this nature. From 

the point of view of consumer rights, selling goods that certainly don’t match the re¬ 

quirements of the appropriate specifications is unethical. Therefore, the neutralization 

of this kind of ’’protection” can’t really be considered to be cracking from a legal point 

of view. On the contrary, it is simply the repair of goods the purchaser makes on his or 

her own and at his or her expense. So, every ugly protection is just waiting for a hacker 

to crack it. 

In order to study this protection, let’s create a kind of a "laboratory rat” or test 

bench (whichever you prefer). Retrieve the CCD file that remained after experiments 

with creating a fictitious track in the second session from the archive (I assume that 

you archive and carefully store all of your CCD files) and edit it as shown below in 

Listing 6.35. The number of the second track is replaced with 9, and, accordingly, 

the number of the third track of the second session is replaced with 10 to ensure cor¬ 

rect "docking" of two sessions. 

Listing 6.35. Creating a gap in the numbering of tracks of the first session 

[Entry 1] [Entry 1] [Entry 3] [Entry 3] [Entry 8] [Entry 8] 

Session=l Session=l Session=l Session=l Session=2 Session=2 

Point=0xal Point=0xal Point=0x02 Point=0x09 Point=0xa0 Point=0xa0 

ADR=0x01 ADR=0x01 ADR=0x01 ADR=0x01 ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 Control=0x04 Control=0x04 Control=0x4 Control=0x4 

TrackNo^O TrackNc^O TrackNo^O TrackNc^O TrackNo^O TrackNo=0 



Chapter 6: Anti-Copying Mechanisms 297 

AMin=0 AMin=0 AMin=0 AMin=0 AMin=0 AMin=0 

ASec=0 ASec=0 ASec=0 ASec=0 ASec=0 ASec=0 

AFrame=0 AFrame=0 AFrame=0 AFrame=0 AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 ALBA=-150 ALBA=-150 ALBA=-150 ALBA=-150 

Zero=0 Zero=0 Zero=0 Zero=0 Zero=0 Zerc^O 

PMin=2 EMin=9 PMin=3 PMin=3 PMin=3 IMin=10 

PSec=0 PSec=0 PSec=l PSec=l PSec=0 PSec=0 

PFrame=0 PFrame=0 PFrame=33 PFrame=33 PFrame=0 PFrame=0 

PLBA=8850 ELBA=-1 PLBA=13458 PLBA=13458 PLBA=8850 PIBA=-1 

[Entry 9] [Entry 9] [Entry 11] [Entry 11] [TRACK 1] [TRACK 1] 

Session=l Session=l Session=l Session=l MODE=l MODE=l 

Point=0xal Point=0xal Point=0x03 Point=0x010 INDEX 1=0 INDEX 1=0 

ADR=0x01 ADR=0x01 ADR=0x01 ADR=0x01 

Control=0x04 Control=0x04 Control=0x04 Control=0x04 TRACK 2] [TRACK 9] 

TrackNo=0 TrackNc^O TrackNo=0 TrackNc^O MODE=l MODE=l 

AMin=0 AMin=0 AMin=0 AMin=0 INDEX 1=0 INDEX 1=0 

ASec=0 ASec=0 ASec=0 ASec=0 

AFrame=0 AFrame=0 AFrame=0 AFrame=0 [TRACK 3] [TRACK 10] 

ALBA=-150 ALBA=-150 ALBA=-150 ALBA=-150 MODE=l MODE=l 

Zero=0 Zero=0 Zero=0 Zero=0 INDEX 1=0 INDEX 1=0 

PMin=3 -> EMin=10 PMin=6 PMin=6 

PSec=0 PSec=0 PSec=l PSec=l 

PFrame=0 PFrame=0 PFrame=33 PFrame=33 

PLBA=8850 ELBA=-1 PLBA=26958 PLBA=26958 

Problems will already arise when burning the tweaked image. Besides incorrectly 
determining the length of the second track (which now became the 9th track), which is 
not surprising for us after all of our experiments, Clone CD has also incorrectly inter¬ 
preted the Lead-out area of the first session. In fact, it has taken it to be a stand-alone 
data track with the number 170 (AAh). What is most interesting here is that the point 
referring to the Lead-out is not explicitly stored in the TOC. This means that track 
number 170 is not present in the disc TOC, and the only way of retrieving it is by 
reading the Q subcode channel from the Lead-out! However, if Clone CD explicitly 
accesses the Lead-out, why does it take it for a stand-alone track? 

Nevertheless, this strange bug doesn’t influence the burning quality, and, there¬ 
fore, we can ignore it with clear conscience. 
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Listing 6.36. Clone CD has inadequately reacted to the gap in the track numbering 

SESSION 1 INFORMATION: 

Session size: 4726 Kbytes 

Tracks: 9 

Track 1: Data Mode 1, size: 4823 Kbytes 

Track 9: Data, size: 4294967200 Kbytes 

Track 170: Data, size: 4294962570 Kbytes 

SESSION 2 INFORMATION: 

Session size: 3939 Kbytes 

Tracks: 1 

Track 10: Data, size: 3939 Kbytes 

In fact, it has gone so crazy that it interpreted the Lead-out track 

(AAh or 170 in decimal notation) as a data track, and the size of the 9th and 170th 

tracks has grown to unimaginable values. A disc ’’protected” in this way is not recog¬ 

nized by the TEAC drive. Following a long period, during which the blinking of the 
activity indicator is accompanied by strained grinding sounds, the drive stops the 

motor and informs us that it hasn’t found any CD. On the other hand, NEC detects 
nine audio tracks. Any attempts at playing them, however, result in the displaying of 

a message informing the user that there is no disc in the drive. The ASUS drive pro¬ 

duced the best results. Although it lost the second session, it at least processed the 

contents of the first one normally. 
Is it possible to read such a disc without having ASUS or any other similar drive at 

your disposal? Yes. To achieve this, it is enough to feed the drive a disc with an abso¬ 

lutely correct TOC, and, after this disc has been recognized, immediately hot-swap the 

disc on the fly. Such a technique allows us to copy the disc contents, but not its TOC. 

To read the TOC, we will have to use ASUS or any other drive that is capable of recog¬ 

nizing incorrect discs and doesn’t prevent working with them at the sector level. Even 
if you do not have ASUS at your disposal, don’t fall into despair, since reading the 

TOC is an absolutely senseless operation. We can restore the boundaries of the tracks 
and sessions without it. (Have you forgotten about the existence of the Q subcode 

channel?) With regard to the incorrect track numbers, this is not a problem, because 
cracking of this "protection" assumes the restoration of correct track numbering that is 

recognizable by all drives, without exception. Therefore, track number 1 must be fol¬ 

lowed by track number 2, which, in turn, must be followed by the track number 3, and 

so on. Thus, the trash written in the TOC is of no importance! Not all information can 

be trusted. However, the protection mechanism can be bound to the TOC by reading 

its contents and comparing them to the original! If this is so (and, most often, this is 
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exactly the case), we must intercept the call to the read toc command (opcode 43h) 

and modify the code that carries out this comparison so that it will not carry out com¬ 

parison any more. Further details on this topic are provided in my book "Hacker 

Disassembling Uncovered". 

Gap in Track Numbering in the Second Session 

Hacking the track numbering of the first session is a nasty and ugly technique. Most 
drives, however, react more adequately to incorrect track numbering in the second 
session. Provided that all of the necessary precautions have been taken, the probability 

of conflicts with user equipment will be reduced to a reasonable minimum. This 
means that the damage from unauthorized copying of unprotected CDs is considera¬ 
bly lower than financial losses resulting from returning ’’unreadable” discs. Moreover, 
there are users who tend to bring manufacturers to court for every conflicting CD. 

Based on the experience gained in the course of previous experiments, we can eas¬ 
ily break the second session by changing the number of the third track to 9 (naturally, 
you can choose any other number; however, remember that superstitious people be¬ 
lieve that even numbers can bring misfortune). 

When burning the tweaked image, Clone CD incorrectly determines the number 
of the last track of the broken session by erroneously interpreting the Lead-out as 
a stand-alone track. However, this has no effect on the burning quality. 

Listing 6.37. Clone CD has incorrectly determined the number of tracks 
to be eight tracks (actually, there are two) 

SESSION 1 INFORMATION: 

Session size: 4726 Kbytes 

Tracks: 1 

Track 1: Data Mode 1, size: 4726 Kbytes 

SESSION 2 INFORMATION: 

Session size: 3939 Kbytes 

Tracks: 8 

Track 2: Data Mode 1, size: 1722 Kbytes 

Track 9: Data Mode 1, size: 2216 Kbytes 

Track 170: Data, size: 4294932446 Kbytes 

Furthermore, track with the number 170 is actually the Lead-out track erroneously 
interpreted as data track (combined tracks). 
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Field tests of the protected disc have revealed the following results. NEC and TEAC 
drives see only the first session of the disc, while the second session is unavailable even at 
the sector level. However, such commands as seek, read subchannel, and read header 

are executed successfully. If all other drives behaved similarly, then the protection devel¬ 
opers would feel free to place a key mark in the Q subcode channel or simply check the 
Q subcode channel of the ’’broken” session for readability. Copiers such as Alcohol 120% 
and Clone CD won’t notice the broken session. Even if they do, they won’t be able to 
copy its contents, which, as was already mentioned, are returned together with the main 
data flow instead of by a separate channel. Provided that the broken session is not avail¬ 
able at the sector level (and this is actually the case), it will be missing on unauthorized 
copies. Consequently, commands like seek, read subchannel, and read header will 
return an error, thus allowing us to distinguish an unauthorized copy from the original. 

Unfortunately, some drives (ASUS in particular) do not provide any access to the 
broken session. Because of this, the original disc will be erroneously interpreted by the 
protection as an unauthorized copy. Therefore, you should not rely on the second 
session! Nevertheless, this precaution does not really weaken the protection, since the 
entire session of this disc cannot even be copied. 

Viewing disc geometry with the Ahead Nero copier shows that the latter is not only 
unable to determine the length of the tracks of the broken sessions correctly (accord¬ 
ing to it, their length is zero), but also incorrectly displays their numbers to a cata¬ 
strophic degree. Actual track numbers written in the TOC are not displayed at all. 
On the contrary, they are replaced by sequential ordinal numbers (Fig. 6.15). Thus, 
track 9 is represented as track 3. In a certain sense, this might be correct. However, to 
copy the protected disc correctly, ordinal numbers are not sufficient. 

Fig. 6.15. Ahead Nero incorrectly displays track numbers 
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Clone CD sees only the first session of the protected disc, and, it would seem, 
doesn’t even suspect the existence of the second session (see Listing 6.38). As a result, 

the broken session is not copied at all, and the TOC of the resulting copy lacks any 
mention of it. Thus, the protection mechanism only needs to read the TOC and com¬ 
pare it to the reference TOC of the original to discover that it is an unauthorized copy. 

Listing 6.38. Clone CD incorrectly displays track numbers 

INFORMATION ABOUT THE CD IN THE DRIVE: 

Sessions: 1 

Used space: 30911 Kbytes 

Sectors: 13458 

Time: 02:59:33 (Min:Sec:Frame) 

SESSION 1 INFORMATION: 

Session size: 30911 Kbytes 

Tracks: 3 

Track 1: Data Mode 1, size: 30911 Kbytes 

With regard to the broken session, everything is more or less clear. The developers 
of Clone CD didn’t expect to encounter perversions of this type. They simply didn’t 

foresee that the track numbering could be cunningly tweaked. Well, everyone makes 
mistakes sometimes. However, the first session of the protected disc was also copied 
incorrectly! 

Listing 6.39. TOC contents of the original disc (left) and that of the copy pro¬ 
duced by Clone CD (right) 

[Entry 2] 

Session=l 

Point=0xa2 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero^O 

[Entry 2] 

Session=l 

Point=0xa2 

ADR=0x01 

Control=0x04 

TrackNc^O 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

The Lead-out address of the first session was 

determined incorrectly! Clone CD has set it 

to the address of the starting point of track 2 

(the first track of the second session), which has resulted 

in an incorrect length for the first track and 

generated lots of unreadable sectors in 

Lead-in/Lead-out. Thus, to check if the disc 

is a legal copy, it is not necessary to read the TOC. 

It is enough to determine the full disc capacity, 

which can be done using the built-in OS 

functions, without needing to use the 
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PMin=3 -> EMin=0 

PSec=l -> PSeo=29 

PFrame=33 PFrame=33 

PLBA=13458 ELBA=2058 

[Entry 10] 

Session=2 

Point=0x02 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero^3 

PMin=3 

PSec=l 

PFrame=33 

PLBA=13458 

[Entry 4] 

Sessional 

Point=0x02 

ADR=0x01 

Control=0x04 

TrackNc^O 

AMin=0 

ASec=0 

AFrame=0 

ALRA=-150 

Zero=3 

PMin=3 

PSec=l 

PFrame=33 

PLRA=13458 

ASPI/SPTI interfaces. 

An alternative is to read the TOC contents 

with the IOCTL_CDRCM_READ_TOC command, which also 

doesn't require the use of ASPI/SPTI. 

Track number 2, belonging to the second session, 

was stuffed into the end of the first session. 

Clone CD didn't even try to compare its starting 

address to the starting address of the Lead-out of 

the first session. "Magically", they coincide, and 

this is probably why Lead-out is erroneously taken for 

a stand-alone track. An attempt at reading the second 

track doesn't produce any result, and the third 

(i.e., 9th) track was lost altogether. Therefore, 

the copy produced by Clone CD differs from the original 

and the protection will easily detect unauthorized copy 

without even accessing the second session. 

Here is the fabulous Clone CD! And note that it 

pretends to deserve the proud name of 

protected CD copier! 

Alcohol 120% copes much better with the task of copying a disc of this type. How¬ 

ever, the copy produced by it also bears at least one considerable difference from the 
original. The number of the broken track is arbitrarily changed from nine to three, 
which means that Alcohol 120% automatically restores the correct track numbering. 

However, it is incorrect track numbering that we need! The protection mechanism 
that binds to the TOC will refuse to work with such a disc, because it will identify it as 

an unauthorized copy. (Curiously enough, the contents of point Alh, specifying the 
number of the last track of the disc, remain unchanged, which means that Alcohol 
120% recovered the TOC incorrectly.) 

Thus, for binding to the original TOC, the protection mechanism doesn’t need 

to read its original contents in the raw form. It is enough to use the standard built-in 
functionality of the operating system, because the changes introduced by protected 
CD copiers in the TOC are so significant that they can be noticed immediately, even by 

the naked eye. 
Nevertheless, protection mechanisms of this type are not very strong. The hacker 

can edit the disc imaged produced by Alcohol 120% manually and return the track 
number to its initial value of nine or any other number (the required value can be de¬ 

termined easily using the cd_read_toc or any other similar utility). 
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Discs That Start from a Track With a Number Other Than One 

"Your queries are exceedingly demanding..." - 

Said the database, before freezing totally. 

The requirement in the standard that track numbering starts from one, as well as 
point AOh stores the number of the first track being present, seems a bit strange, if not 
excessive. Of course, it is possible to argue that point AOh has special meaning for the 

second and all following sessions. My answer, however, would be that, first, the num¬ 
ber of the first track of each session is equal to point Alh of the previous session plus 

one, and, second, that the number of the first track of each session is the smallest track 
number of all tracks belonging to this session. Thus, points AOh and Alh are redun¬ 
dant anyway, and are intended exclusively to allow us quickly to determine the first 
and last track numbers without analyzing the entire TOC. This task was necessary for 
the weak processors of the first audio players. 

The really interesting question here is as follows: Do contemporary CD drives 

analyze these points or silently and blindly rely on the default number of the first track 

(the standard, by the way, doesn’t prohibit this)? Let’s try to find the answer by creat¬ 
ing a disc, on which the first track bears a number other than one (for example, let’s 

suppose that the disc starts immediately from track 2). Based on all previous experi¬ 

ence, this can be done easily. It is enough to change point 0x01 to point 0x02, and 

number the points of all remaining tracks (if there are any) accordingly, change [track 

1] to [track 2] and renumber all remaining tracks (if, again, there are any), and, fi¬ 

nally, increase point Alh of the first session and points A0h/Alh of all remaining ses¬ 
sions by one. If you forget to do this and leave all points with their default values, the 

disc will be totally unreadable by an NEC drive. For a TEAC drive, the disc will be ac¬ 
cessible only at the sector level, and even ASUS will see only the first session. And this 

will only happen after some lengthy dragging by the reading head. Thus, while ASUS is 
an excellent drive, in some respects it behaves quite nervously. If you attempt to copy 

a disc of this type using Clone CD, the latter will declare that the disc is blank (even 
though this is not the case). Clone CD only discovers that the disc is not empty when it 

tries to clear it. Alcohol 120% will not see anything on the disc either. Like Clone CD, 
it won’t copy anything. If you are not sure that the drives your users have at their dis¬ 

posal are capable of reading these discs at least at the sector level, it will be easy to cre¬ 
ate practically crack-proof protection that will never be copied by any copier 

(except for the one that I have developed on my own, because my copier never looks 
at the TOC). However, because of possible conflicts, I wouldn’t advise this. 

Discs starting from tracks numbered other than one, but with points AOh and Alh 

set properly, are readable by practically all of the drives that I have at my disposal. 

Only the NEC drives produce soft clicking sounds and freeze so badly that you end up 
having to hit the eject button. Thus, this protection is far from perfect. This is even 
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more the case when you consider that Clone CD cracks it easily by creating a correct 
and usable copy. Alcohol 120% behaves differently, because it displays an ’’access vio¬ 
lation” error message and terminates abnormally. 

Thus, ASUS and TEAC actively use points AOh and Alh, and NEC, to all appear¬ 

ances, relies on the assumption that track numbering must necessarily start from 1. 

While, on the one hand, this isn’t contradictory to the standard, on the other, it does 

not exactly fully correspond to it either, since the presence of point AOh is justified. 
Consequently, ignoring it won’t do us any good. 

The situation with Alcohol 120% is not fully clarified yet. Access violation is 

the consequence of severe algorithmic blunders and design bugs. In all likelihood, 

Alcohol 120% reads the TOC into the buffer and scans it sequentially to find track 

number one, forgetting to check the situations where the buffer limits are exceeded. 

Clone CD interprets the standard literally, thanks to which it can copy protected 
discs by storm (although, for the sake of accuracy, such behavior is more an exception 
than the rule). As we have seen, discs with incorrect TOCs that can be copied correctly 
are very rare. 

Disc with Track Number Zero 

Did you ever think about the following question: Why does track numbering on CDs 

start from one and not from zero? After all, to distinguish a programmer from a plain 

user, it is enough to give the military "Number off!" command. The normal reaction 

would simply be for the first individual in line to yell out "First". In its way, this is cor¬ 

rect. A programmer, however, will first ask, in which notation (binary, octal, or hexa¬ 

decimal) to count, and then will proudly shout out "Zeroth"! Some people might ob¬ 

ject that CDs were developed specially for the users, who are bound to feel more 

comfortable with decimal notation and numbering that starts from one. 

However, despite the persuasive nature of this argument, it’s faulty. Track counting 

for any disc starts from zero instead of one. In fact, the number zero is reserved for the 

service track (disc Lead-in area) and its content is not available at the interface level. This, 

however, doesn’t change anything! The tno (Track Number) field of the Q subcode 

channel of the Lead-in disc area is equal to zero, which means that, from the drive's point 

of view, every disc starts from track number zero. The electronic circuitry of the drive 

reads and addresses track zero in absolutely the same way as any other disc track. 

This allows it to preserve transparency and order in the numbering system. From the 

standpoint of system programmers that develop CD drive firmware, track numbering 

always starts from zero. As for end users, they think that track numbering starts from 

one. In other words, both parties are free to maintain their own point of view. 

The attributes of track number zero are missing from the TOC because this is 
the track that is used for storing the TOC itself. Let’s consider what happens if one 
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of the points of an actual or fictitious track is assigned the value zero. In other words, 
what will happen if we create another track number zero in the user area of the disc? 

If, besides entering fictitious data in the TOC, we also correct the contents of the 

Q subcode channel by filling the tno field with zeros, then, from the drive’s point of 
view, such a track will be indistinguishable from the disc Lead-in area. Any attempt at 
reading this track sector-by-sector will fail (although some drives can cope even with 
the worse situations). The subchannel data of track number zero, theoretically, must 

be available for reading by commands such as seek/read subchannel. However, there 
is no guarantee of this, because the presence of two sequential Lead-in areas causes the 
drive to behave nervously and unpredictably. Abandoning the restoration of sub¬ 
channel data doesn’t change the situation considerably. The presence of the zero point 
in the TOC is an unusual event in itself. 

Most drives will go a little crazy and will refuse to process such a disc, reading its 
TOC in an unpredictable way. For example, NEC returns an error when executing the 

read toc command, while ASUS interprets track number zero as an indicator of TOC 
termination. TEAC, having encountered track number zero, starts to behave nervously, 
and instead of the attributes of all further tracks ’’spits out” the contents of all its internal 

buffers along with the garbage that remained from the TOC of the previous disc. In brief, 

the presence of track number zero makes the CD practically unreadable. 
We could, actually, halt our discussion at this point. After all, who needs conflict- 

prone protection that works exclusively under lab conditions but is unusable in prac¬ 

tice? However, there is one factor in favor of this type of protection. Because CD costs 

are dropping rapidly, these discs can be used not only for storing information, but also 

as a kind of key. 

The point is that the presence of track number zero does not prevent the reading 

of the subchannel data of the spiral track, but most copiers (including Alcohol 120% 

and Clone CD) are more likely to freeze than to copy such a disc! Thus, the algorithm 

of the protection mechanism consists of the ’’manual" reading of the TOC using 

seek/read subchannel commands and checking it further for the presence of track 

number zero. 

Although the key disc cannot contain any other data except the TOC being 

checked, this is not a problem. In a certain sense, this is even an advantage. For exam¬ 

ple, suppose that the first CD, which is not protected against copying in any way, con¬ 

tains the demo version of some program freely available for downloading from the 

Internet. To turn this demo version into a fully functional one, the user must insert 

the key disc into the drive. The key disc can be obtained either from the regional dealer 

or sent to the user by mail. It is not actually necessary to keep the key disc in the drive 

constantly, because the protection can remember the registration flag, store it in the 

system registry and request the key disc only from time to time — just in case the user 

decides to lend it to someone. No one would argue that this isn’t much more reliable 
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than the key file or registration number. Most users actually share them with friends or 

even publish them on the Internet. Taking into account that subchannel data of the 

disc can store not only the key, but also executable (or interpreted) code that ensures 

the full functionality of the registered program, it becomes clear that if the hacker has 

not got a single copy of the fully functional program of the protected application, 

it will be unrealistic to crack this program within a reasonable time. However, let us 

proceed with our goal and try to create an image of the protected disc containing a 

track number zero on it. As we will see quite soon, this task is not an easy one! 

If we simply reset the point of the first track to zero, Clone CD will refuse to open 

this image because of an analysis error. There are actually at least two such errors. 

First, Clone CD is unaware of the possible existence of tracks with numbers equal to 

zero. It can’t even spot these tracks when looking right at them. Second, Clone CD is 

inexcusably optimistic, because it relies on the assumption that every session must 

contain at least one track (which is only an assumption). 

Alcohol 120% is more tolerant of sessions containing only track number zero: 

It opens the image of the protected disc successfully, and correctly displays the track 

number (Listing 6.40). Yet the track length is determined incorrectly. When attempt¬ 

ing to burn such an image, the ’’access violation” error message appears, and the copier 

freezes totally, without even attempting to terminate abnormally (Fig. 6.16). Calling 

Task Manager and killing the process doesn’t solve the problem, because the disc tray 

will become locked, and the user will have to run the CD.iock.exe utility (see the com¬ 

panion CD) for decreasing the lock counter by one. 

Listing 6.40. How Alcohol 120% opens the image of the protected disc 

Type: CloneCD image file 

Path: L:\CD-hack\ 

Name : IMAGE.CCD 

IMAGE.img 

IMAGE.sub 

Size: 8.81 MB 

Sessions: 2 

Tracks: 2 

Session 01: 

Track 

Session 

00: 

02: 

Mode 1, Length: 000000 (0 Byte), Address: 000000 

Track 01: Mode 1, Length: 000000 (0 Byte), Address: 013458 
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Fig. 6.16. Response of Alcohol 120% to an attempt of burn the CD image 
with only track number zero inside the first session 

But wait: This is actually a gold mine! The disc with only track number zero within 
the first session cannot be copied, and it also cannot be burnt! Even if a hacker man¬ 
ages to make a correct dump of a protected disc through some innovative or highly 
scientific method, there will be no tool capable of burning it! To be absolutely fair, 
it is necessary to mention that the developer of the application being protected will 
find him or herself in a similar situation. They also will have no tools for burning the 
key disc if they don’t undertake the task of writing a custom burner. Naturally, manu¬ 
facturing a stampered CD with track number zero is not a problem. Not everyone, 
however, can afford this (or certainly at least not freelance programmers). 

A compromise variant of protection here is to add at least one track with a non¬ 
zero number to the sessions being tweaked. It is possible to prepare such a disc using 
Clone CD. In this case, the programmer doesn’t have to undertake the tedious job of 
writing a custom burner, which certainly is an advantage. On the other hand, because 
the original disc is created using a widely known utility, the process of creating unau¬ 

thorized duplicates is also simplified considerably. In this case, the hacker must only 
make a correct dump of the protected disc, and all the other tasks can be delegated to 
Clone CD. There is no need to write specialized cracking software. In other words, 
everything that is easy to protect can also easily be cracked. But qualified hackers are 
not numerous; therefore, to prevent the leaking of your information and unauthorized 
copying of your programs, it is enough to create a key disc that cannot be copied by 
widely used copiers in automatic mode. As we will see later, protection mechanisms of 
this type satisfy this requirement. 

The process of creating a protected disc is without certain refinements. While the 
creation of a fictitious track number zero doesn’t create special complications on its 
own, it does raise one question: Where do we put it? Would it be best to put it in 

the first session, or, instead, in the second? Also, should it precede or follow a genuine 
track? Because the Lead-in area of the first session is not available for reading at 
the subchannel level, it is impossible to read the TOC of the first session manually. 

Furthermore, you can’t rely on the read toc command, because as was mentioned 
earlier, there is no guarantee that it will execute correctly. The Lead-in areas of the sec¬ 

ond and all following sessions are available at the subchannel level, and manual read¬ 
ing of their TOCs is still possible. The specific position of track number zero within 
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the session doesn’t play any special role. Track number zero can be placed either be¬ 
fore or after a non-zero track with equal success. 

Don’t forget the need to correct point AOh, storing the number of the ’’first” track 

of any session. If this value remains unchanged, Clone CD will write the disc image 
without any complications. However, the TOC of the burnt CD won’t contain any 
mention of track zero. Alcohol 120% behaves similarly. To avoid this, the value of 

point AOh of the session, to which you add track zero, must be reset to zero. 

A fragment of the edited CCD file is provided below: 

Listing 6.41. A fragment of a CCD file with track number zero added. 

TocEntries=13 

[Entry 8] 

Session=2 

Point=0xa0 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=2 -> 

PSec=0 

PFrame=0 

PLBA=8850 

TocEntries=14 

[Entry 8] 

Session=2 

Point=0xa0 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=0 

PSec=0 

PFrame=0 

PLBA=8850 

Correcting the number of TOC entries 

This must not necessarily have to 

be entry number 8. 

The main point here is to ensure that 

Session == 2 and Point == AOh 

This point corresponds to the 

number of the first track. 

These are ADR/Control fields describing 

the processing mode of this track (data track) 

TNO = 0 - this is a Lead-in area 

\ 

+- Current absolute address 

/ 

Current LBA address 

This field is always zero. 

Correcting the number of the "first" track 

These fields have no actual sense and 

must be equal to zero. 

LBA address of the number of the "first" track 

[Entry 11] 

Session=2 

Point=0x00 

ADR=0x01 

Contro1=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

; Adding another Entry, describing track 0 

; Track number 0 must not be in the first session. 

; Track number is zero. 

; Subchannel Q encodes current position data 

; Data track 

; This is the Lead-in area. 

; \ 

; + - Conventional absolute Lead-In address 

; / 

; Conventional LBA address of Lead-In 

; This field must be equal to zero. 
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PMin=3 

PSec=l 

PFrame=66 

PLBA=13458 

\ 

; + - Absolute starting address of track 0 

; / 

; LBA address of track 0 

When viewing the geometry of a disc protected in this way, Ahead Nero displays ap¬ 
proximately1 the information show in Fig. 6.17. The fact that it interpreted the second 
session as open ("Session is open") has a reasonable explanation, in that the track number 0 

that we have created was erroneously interpreted by Nero as the Lead-in. As a result, the 
shaky equilibrium between the Lead-in and Lead-out areas has been disturbed. The sec¬ 
ond session of the disc, by the way, is closed, and TOC analysis confirms this. To remain 
unaware of the fact that Lead-in areas are never mentioned in the TOC is a mistake. It is 

a little more difficult to understand why the second track was incorrectly identified as 
belonging to the first session. This appears to be an algorithmic blunder that doesn’t do 
anything to increase our faith in Nero or its developers. 

Fig. 6.17. Presence of track number 0 confuses Nero with regard to the status 
of the last session of the disc. Nero thinks that the second session is open, 

although this is actually not the case 

Clone CD behaves similarly. When attempting to copy the protected disc on drives 
such as ASUS and TEAC, it runs into the Lead-out area of the first disc session right 

1 "Approximately” means that on some drives, Nero doesn't produce any information at all. 
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away. As a result of algorithmic blunders, it loses track of the second session (the one 
that contains track 0) completely. As a consequence, the TOC of the copied disc will 
never mention it. The starting address of the Lead-out area of the first session is also 
determined incorrectly (Clone CD sets it to the starting address of track 0 of the sec¬ 
ond session). Points BOh (the starting address of the next position for further writing) 
and cOh (the starting address of the first Lead-in area of the disc) are also lost. In other 
words, the TOC of the copied disc considerably differs from the TOC of the original 
disc. Thus, determining that this is unauthorized copy is simple. Just compare 
for yourself the TOC of the original key disc with track 0 in the second session and the 
TOC of its copy obtained using Clone CD. All mismatches are in bold. 

Listing 6.42. The original TOC (left; attributes of track 0 are marked by gray 
shading) and its copy obtained by Clone CD (right) 

01 14 00 A0 00 00 00 00 01 00 00 01 14 00 A0 00 00 00 00 01 00 00 

01 14 00 Al 00 00 00 00 01 00 00 01 14 00 Al 00 00 00 00 01 00 00 

01 14 00 A2 00 00 00 00 00 ID 21 01 14 00 A2 00 00 00 00 03 01 42 

01 14 00 01 00 00 00 00 00 02 00 01 14 00 01 00 00 00 00 00 02 00 

01 54 00 B0 02 3B 21 03 16 0E 22 

01 54 00 CO A2 C8 E0 00 61 IB 15 

02 14 00 A0 00 00 00 00 02 00 00 

02 14 00 Al 00 00 00 00 00 00 00 

02 14 00 A2 00 00 00 00 03 18 17 

02 14 00 00 00 00 00 00 03 01 42 

When attempting to copy the protected disc on a NEC drive (which, as was men¬ 

tioned earlier, refuses to read a TOC containing track 0), Clone CD surprisingly sends 

out a ’’disc empty?” query. No matter what answer we give, Clone CD will make no 

effort to start copying, thus annoying, perhaps even enraging, the hacker. 

Alcohol 120% freezes when attempting to copy the protected disc. It barely man¬ 

ages to find enough time to spit out the "access violation" exception before it "dies." 

It also locks the drive’s tray so that, in order to remove the disc from the drive, the 

user has to either decrement the lock counter or reboot the system. 

Overall (at least from the pirate’s point of view, naturally), things look pretty bad. 

We now have the right to consider the procedure of creating a key disc that essentially 

can’t be copied as having been successfully completed. Now, it would be nice to be able 

to understand how to work with the obtained disc and how the protection mechanism 

will be able to distinguish the copy from the original. 

The first idea that comes to mind is to read the raw TOC using the read toc 
command and check for the presence of track 0 and its attributes (just to be on the safe 
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side). If track 0 is actually present in TOC and its attributes (i.e., the Session, adr, 

Control, and PMin: PSec: Pfarme fields) correspond completely to the reference values, 
then we are dealing with an original disc. Otherwise, the disc is an unauthorized copy. 
The advantage of this algorithm is that it is easy to implement. In fact, its implementa¬ 

tion requires only about ten lines of code. The drawback, on the other hand, is the 
instability of key disc recognition on certain drive models. The drive might refuse 

to read the TOC, and our protection mechanism must be prepared for this situation. 
Let’s do the following: If the read toc command returns an error message, but the disc 
is present in the drive and does not prevent the execution of the seek command, then 
it is the original disc. Naturally, such heuristic assumptions considerably weaken 

the protection. However, for most applications, it will still remain sufficiently strong. 
However, error-free execution of the read cd command cannot be considered as 

evidence of the fact that it has actually been completed successfully. Although there are 
drives capable of reading a TOC containing track number 0,1 do not know of a single 
drive that does this correctly. Therefore, the protection must take into account 

the nature of possible TOC errors beforehand, and take adequate counter-measures. 
For example, let us consider the result returned by the TEAC drive as shown in 

Listing 6.43. Track 0 is marked by gray shading, and the garbage that follows it is in bold. 

Listing 6.43. Contents of the TOC of an original key disc returned 
by the TEAC drive 

Session number 

| ADR/Control 

| | TNO 

| | | Point 

1 1 1 1 1 AM AS AF PM PS PF 

1 

01 

1 

14 

1 

00 

1 

A0 

1 

00 

1 

00 

1 

00 

1 

00 

1 

01 

1 

00 

1 

00 point A0 

01 14 00 Al 00 00 00 00 01 00 00 point Al 

01 14 00 A2 00 00 00 00 00 ID 21 point A2 

01 14 00 01 00 00 00 00 00 02 00 point 01 

01 54 00 B0 02 3B 21 03 16 0E 22 point B0 

01 54 00 CO A2 C8 E0 00 61 IB 15 point CO 

02 14 00 A0 00 00 00 00 02 00 00 point A0 

02 14 00 Al 00 00 00 00 00 00 

o
 

o
 point Al 

02 14 00 A2 00 00 00 00 03 18 17 point A2 

02 14 00 00 00 00 00 00 03 01 42 

EB ED 00 EB F4 EB 7A EF ED ED EF ■ \ 

first track of session 1 in PM 

last track of session 1 in PM 

Lead-out address of session 1 in PM:PS:PF 

starting address of track 1 in PM:PS:PF 

position for further writing in AM:AS:AF 

lead-in starting address in PM:PS:PF /tweaked 

first track of session 1 in PM 

last track of session 2 in PM 

Lead-out address of session 2 in PM:PS:PF 

DF 00 EA FD F5 FF 

F7 00 FB FF ED FB FF F7 FF ; / 

| As y°u 0311 see, TEAC, having encountered 

garbage | track 0 starts to spit out garbage 

| instead of useful data. 
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Look at the suspicious garbage that follows immediately after track 0. This is the 
content of the internal buffers of the drive, which is present here as a result of a pro¬ 
gramming mistake in the drive’s firmware (by the way, I used the newest firmware 
version available at the moment of writing — version 1.09). A basic investigation 
shows that this garbage is not arbitrary and represents the ’’tail” of the TOC of the pre¬ 
vious disc. 

For example, let us load a disc into the drive (in my experiment, this was 

the "Soul Ballet Hit Collection"), then replace it with the key disc and see what 
comes out. 

Listing 6.44. The TOC of the Soul Ballet Hit Collection disc (left) and the TOC 
of the key disc (right), returned by the TEAC drive 

01 10 00 A0 00 00 00 00 01 00 00 01 14 00 A0 00 00 00 00 01 00 00 

01 10 00 Al 00 00 00 00 10 00 00 01 14 00 Al 00 00 00 00 01 00 00 

01 10 00 A2 00 00 00 00 48 1C 05 01 14 00 A2 00 00 00 00 00 ID 21 

01 10 00 01 00 00 00 00 00 02 00 01 14 00 01 00 00 00 00 00 03 00 

01 10 00 02 00 00 00 00 03 35 40 01 54 00 B0 02 3B 21 03 16 0E 22 

01 10 00 03 00 00 00 00 08 14 33 01 54 00 CO A2 C8 E0 00 61 IB 15 

01 10 00 04 00 00 00 00 OC 21 0D 02 14 00 A0 00 00 00 00 02 00 00 

01 10 00 05 00 00 00 00 10 3A 2D 02 14 00 Al 00 00 00 00 00 00 00 

01 10 00 06 00 00 00 00 16 23 19 02 14 00 A2 00 00 00 00 03 18 17 

01 10 00 07 00 00 00 00 1C IB OC 02 14 00 00 00 00 00 00 03 01 42 

01 10 00 08 00 00 00 00 21 07 49 09 25 00 IF 00 00 00 00 19 01 10 

01 10 00 09 00 00 00 00 25 IF 19 0A 2A 00 01 00 00 00 00 06 01 10 

01 10 00 0A 00 00 00 00 2A 01 06 0B 2D 00 2D 00 00 00 00 00 01 10 

01 10 00 0B 00 00 00 00 2D 2D 00 OC 33 00 29 00 00 00 00 02 01 10 

01 10 00 OC 00 00 00 00 33 29 02 0D 39 00 08 00 00 00 00 45 01 10 

01 10 00 0D 00 00 00 00 39 08 45 0E 3F 00 IE 00 00 00 00 27 01 10 

01 10 00 0E 00 00 00 00 3F IE 27 OF 43 00 IE 00 00 00 00 29 01 10 

01 10 00 OF 00 00 00 00 43 IE 29 10 44 00 03 00 00 00 00 15 FF FF 

01 10 00 10 00 00 00 00 44 03 15 

Look at this! Now, the TOC contents of the key disc have changed considerably. 

Maybe not entirely, but the tail has clearly changed. Note that the sequence of bytes in 

the ’’tail" of the key disc corresponds to the sequence of bytes of the "Soul Ballet" CD. 

Well, although "...09 00 00 00 00 25 IF 19..." is not absolutely the same as 

"...09 25 00 IF 00 00 19...’’, if we remove the parasitic zeros, we end up with 

"...09 25 IF 19..." and "...09 25 IF 19...’’, which are absolutely identical. Thus, we 

are actually dealing with a firmware error. This is not exactly an endorsement for the 

drive or to its developers. 
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ASUS behaves more correctly, by simply "cutting off" the TOC by track 0, even 
if track 0 is not the last track of the disc. This is also a firmware error, although not 
as blatant as the one above. 

Listing 6.45. The TOC of the key disc returned by the ASUS drive 

01 14 00 A0 00 00 00 00 01 00 00 

01 14 00 Al 00 00 00 00 01 00 00 

01 14 00 A2 00 00 00 00 00 ID 21 

01 14 00 01 00 00 00 00 00 03 00 

01 54 00 B0 02 3B 21 03 16 0E 22 

01 54 00 CO A2 C8 E0 00 61 IB 15 

02 14 00 A0 00 00 00 00 02 00 00 

02 14 00 Al 00 00 00 00 00 00 00 

02 14 00 A2 00 00 00 00 03 18 17 

02 14 00 00 00 00 00 00 03 01 42 

As mentioned before, NEC does not produce anything except errors, which the 
protection mechanism must interpret as an indication of a genuine disc. Otherwise, its 
developer will have to deal with complaints from legal users trying to "feed" this disc to 
an "incorrect" drive (from the protection’s point of view). 

Nevertheless, intentionally weakening the protection mechanism is not the opti¬ 
mal solution. It is much better to try to read the TOC manually. Of course, it is hard to 
implement programmatically. On the bright side, it is even harder to crack! Although 
it is easy to emulate the read toc command, the task of reproducing specific features 
of subchannel data processing is unrealistic. Thanks to this, the improved protection 
variant will easily bypass all copiers that emulate virtual discs. 

At the risk of cooling down your programming zeal, I should mention that reading 
subchannel data correctly is not as easy a task as it might appear at first. Official speci¬ 
fications are not sufficient to implement an effective protection mechanism correctly, 
because they do not reflect even the most minor of the cranky features inherent in 
various drives, something that you will encounter in practice. 

First and foremost, absolute sector addresses are in no way related to their "corre¬ 
sponding" subchannel data. This is because one section of subchannel data is "spread" 
over several sectors. Furthermore, as a result of certain design features, the processing 
of subchannel data is separate from the processing of the main data flow. Because of 

this, the positioning of the head to sector X, followed by a call to the read subchannel 

command, will produce subchannel data of a sector other than X. It will be sector Y 
located somewhere "nearby" to sector X. At the same time, every manufacturer has its 
own idea of what "nearby" means, and in some cases you’ll find yourself hundreds of 

sectors ahead of the one required. 
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Second, the combination of commands seek/read subchannel is unstable, and its 
reproducibility is very poor. This means that there is no guarantees that positioning 

the head to sector X+k will result in the reading of the subchannel data for sector Y+k. 
The drive might return the data from sector Y, but, with equal probability, 
it might return data from sector Y+i. Also, there are no guarantees that the repeated 

positioning of the head to sector X will return subchannel data from sector Y once 

again. By the way, do not forget to pause for at least 1 second between two sequential calls 
to the SEEK command. Otherwise, the head won't have enough time to move to another 

location, and the drive will return subchannel data from the previous location, which has 

already been cached. All that remains is to rely on the current sector addresses returned 

in subchannel information itself (the "Absolute CD Address” field). Having encoun¬ 

tered the address of the required sector in this field, we can be absolutely sure that the 
subchannel information belongs to that sector, and not to any other. 

Listing 6.46. A correct interpretation of subchannel information 

|LBA - 10D4|: 00 15 00 0C 01 14 00 g |00 00 22 92| |00 00 11 6d| 

AAAAAAAAAA A AAAAAAAAAAA AAAAAAAAAAA 

LBA address of the sector to | Point attributes LEA address of the sector whose 

which the head was positioned | subchannel data was returned by the drive 

using the SEEK command Point 

Third, the specific format of the subchannel information is not defined by the 

standard. On the contrary, it depends on the drive itself, and varies significantly from 

model to model. Lead-in and Lead-out areas of discs are the most inconsistent in this 

respect. The standard doesn’t say anything about the possibility of reading them at the 

subchannel level, silently assuming that no one will ever need this. Consequently, 

manufacturers implement the drives at their own discretion. Fields of absolute and 

relative addresses can be swapped without notification, and addresses themselves 

can be specified in any format, M:S:F or lba. The values of points A0h, Alh, and A2h 

(the number of the first track, the number of the last track, and the Lead-out address) 

can be replaced by the values 64h, 65h and 66h, respectively. Finally, non-standard 

points (including zero points) are often missing from subchannel data. If this is the 

case, the data from either the preceding or following sections are returned instead! 

All of these factors significantly complicate the interpretation of subchannel data and 

searching in them for track number 0. Consequently, we have to proceed as follows: 

Sequentially read the subchannel data of different disc sectors, and wait until the track 

numbers change first to AAh, then to 00h, which corresponds to the head movement 

from Lead-out area of the first session to the Lead-in area of the second session. 
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Continuing to read the Lead-in, we are trying to detect the pattern, according to which 

the values of absolute and relative address fields are changing, as well as their format 

(LBA or M: S: f). The representation format can actually be detected quite easily. If the 

least significant byte of the address takes a values larger than 75 (4Bh), this means that 

we are dealing with LBA, if not, then it is M: s: F. Further on, since the relative address 

fields in the Lead-in area of the disc are used for storing attributes of the "own" point, 

they considerably differ from the current sector addresses (i.e., the ones, to which the 

head was positioned). On the contrary, the fields of absolute addresses must be suffi¬ 

ciently close to the current addresses. 

Now, only one problem remains — what should we do if the subchannel data of 

the Lead-in area do not contain track 0? Don’t rush to conclude that the disc is an un¬ 

authorized copy, because, as already mentioned, some drives do not return non¬ 

standard points. At the same time, the absolute addresses of sectors storing subchannel 

attributes of track 0 will not be present in the TOC that has been read. A disc copy ob¬ 

tained using any of the copiers available at the current moment, according to these 

absolute addresses, will contain attributes of other tracks, which the drive will correctly 

read and return, or will simply refuse to position the head to this area, returning an er¬ 

ror message of some sort. 

So, folks, are we still going to implement this? To simplify the perception of this 

material, some listings will be provided below, containing subchannel information of 

the key disc returned by several different drives. They are supplied with comments 

that, as I hope, will help you to understand the idea. 

Listing 6.47. The result of reading subchannel information from the Lead-in on 
the TEAC drive; track 0 is clearly visible 

+intemal+ Format 

1 1 1 1 1 ADR/Control 

1 1 1 1 1 1 TNO 

1 1 1 1 1 1 1 Point 

1 1 

1 1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

+- 

1 

- PLEA 

1 1 

-+ +- 

1 1 

- ALBA 

1 1 

-+ 

1 

LBA - 10D4:00 15 00 oc 01 14 00 A0 00 00 22 92 00 00 11 00 LBA 1GD4 1100 

LBA - 1005:00 15 00 oc 01 14 00 A0 00 00 22 92 00 00 11 00 LBA 1GD5 -> 1100 

LBA - 1006:00 15 00 oc 01 14 00 A0 00 00 22 92 00 00 11 6E LBA 1GD5 116E 

LBA - 1007:00 15 00 oc 01 14 00 A0 00 00 22 92 00 00 11 00 LBA 1GD7 -> 1100 (!) 

LBA - 10D8:00 15 00 oc 01 14 00 A0 00 00 22 92 00 00 11 6E (head "beat") 

LBA - 10D9:00 15 00 oc 01 14 00 A0 00 00 22 92 00 00 11 6E LBA 2292 = 02:00:00 M:S:F 

LBA - 10DA:00 15 00 oc 01 14 00 Al 00 FF EF 6A 00 00 11 73 LBA FFh - 6Ah = 95h (149) 

LBA - 10DB:00 15 00 oc 01 14 00 Al 00 EF EF 6A 00 00 11 73 LBA 149 = MSF 0:0:1 
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LBA - 10DC:00 15 00 oc 01 14 00 Al 00 EF EF 6A 00 00 11 74 ; Curious, because the number 

LBA - 10DD:00 15 00 oc 01 14 00 Al 00 EF EF 6A 00 00 11 75 ; of the last track must be 

LBA - 10DE:00 15 00 oc 01 14 00 Al 00 EF EF 6A 00 00 11 74 ; in PM, not in PF. 

LBA - 10DF:00 15 00 oc 01 14 00 Al 00 EF EF 6A 00 00 11 74 ; Take this into account! 

LBA - 10E0:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 79 ; Head beat continues. 

LBA - 10E1:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 79 ; Sectors are out of order: 

LBA - 10E2:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 7B ; 1179, 1179, 117B, 1179, 117 A, 

LBA - 10E3:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 79 ; 117A, and there are no 

LBA - 10E4:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 7A ; sectors 1176, 1177, 

LBA - 10E5:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 7A ; and 178. 

LBA - 10E6:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 80 ; 

LBA - 10E7:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 80 ; 

LBA - 10E8:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 80 ; Head beat 

LBA - 10E9:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 7F ; continues. 

LBA - 10EA:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 80 ; 

LBA - 10EB:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 81 ; 

LBA - 10EC:00 15 00 oc 01 14 00 00 00 00 34 B3 00 00 11 85 ; Here is track 0, it 

LBA - 10ED:00 15 00 oc 01 14 00 00 00 00 34 B3 00 00 11 85 ; is located in sectors 

LBA - 10EE:00 15 00 oc 01 14 00 00 00 00 34 B3 00 00 11 86 ; 1185 and 1186 - let's 

LBA - 10EF:00 15 00 oc 01 14 00 00 00 00 34 B3 00 00 11 85 ; memorize this! 

LBA - 10F0:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8C ; Point A0 repeats... 

LBA - 10F1:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8C ; and all other points are 

LBA - 10F2:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8B ; repeated with it. By reading 

LBA - 10F3:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8B ; subchannel data further, 

LBA - 10F4:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8C ; we will encounter track 0 

LBA - 10F5:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8B ; once again, but already 

LBA - 10F6:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8B ; in other sectors. Let's 

LBA - 10F7:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8B ; memorize them too. 

Here, the absolute addresses are represented in LBA format. The discrepancy be- 
tween the address to which the head is positioned, and the address whose subchannel 

data are read is about 400 sectors. However, the pattern is quite regular, and the abso- 
lute addresses fall in a closely-grouped bunch, although TEAC is not quite perfect, and 
faults such as 11: 6D, ll 6E , 11: 6D, 11: 6E occur ffeq uently. The attributes of track 0 are 

present in an explicit form, which is very good. 

With regard to the ASUS drive, its behavior is a little more disordered. 

Listing 6.48. The result of reading Lead-in subchannel information on the ASUS drive 

+intemal+ Format 

1 1 1 1 | ADR/Control 

1 1 1 1 | | TNO 

1 1 1 1 I | | Point 

1 1 1 1 

1 1 1 1 

| | | | +- PLEA -+ +- ALBA -+ 

1 1 1 1 1 1 1 1 1 1 1 1 



Chapter 6: Anti-Copying Mechanisms 317 

LBA - 10D3:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 6F ; Here, subchannel data are returned 

LBA - 10D4:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 73 ; in a more disorderly fashion, 

LBA - 10D5:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 73 ; therefore it is already 

LBA - 10D6:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 73 ; inpossible to distinguish 

LBA - 10D7:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 73 ; neighboring points from 

LBA - 10D8:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 6F ; each other. Nevertheless, 

LBA - 10D9:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 6F ; they are located by the same 

LBA - 10DA:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 6F ; ALBA addresses as in the 

LBA - 10DB:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 6F ; previous case. Therefore, 

LBA - 10DC:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 73 ; ALBA addresses can serve 

LBA - 10DD:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 6F ; as a solid helper 

LBA - 10DE:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 73 ; in identifying points 

LBA - 10DF:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 73 ; independently from the mood, 

LBA - 10E0:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 79 ; age, or design features 

LBA - 10E1:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 79 ; of specific drive models. 

LBA - 10E2:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 79 ; This considerably 

LBA - 10E3:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 75 ; simplifies the procedure 

LBA - 10E4:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 7A ; for checking 

LBA - 10E5:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 75 ; whether the disc is genuine 

LBA - 10E6:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 80 ; or an unauthorized copy. 

LBA - 10E7:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 81 

LBA - 10E8:00 15 00 oc 01 14 00 Al 00 FF FF 6A 00 00 11 75 

LBA - 10E9:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 7B 

LBA - 10EA:00 15 00 oc 01 14 00 00 00 00 34 B3 00 00 11 85 ; Track 0 attributes 

LBA - 10EB:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 81 

LBA - 10EC:00 15 00 oc 01 14 00 A2 00 00 3B 45 00 00 11 7B 

LBA - 10ED:00 15 00 oc 01 14 00 00 00 00 34 B3 00 00 11 85 ; Note that they are located 

LBA - 10EE:00 15 00 oc 01 14 00 02 00 00 34 92 00 00 11 81 

LBA - 10EF:00 15 00 oc 01 14 00 00 00 00 34 B3 00 00 11 86 ; at the sane LBA addresses: 
LBA - 10F0:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8B 

LBA - 10F1:00 15 00 oc 01 14 00 00 00 00 34 B3 00 00 11 85 ; 1185h vl 1186! 

LBA - 10F2:00 15 00 oc 01 14 00 AO 00 00 22 92 00 00 11 8B 

Here, absolute addresses are also presented in the LBA format, and the delta is 
again about 400 sectors. However, the level of disorder in the information being re¬ 

turned is considerably higher, and sector numbers start to drift (see the alba field). 

Listing 6.49. The result of reading the subchannel information from the Lead-In 
area by a NEC drive 

+intemal+ Format 

| | | | | ADR/Control 

I I I I I I TNO 

I I I I I I I Point 
| | | | | | | | +- ALBA -+ +- PLEA -+ 
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LBA - 1171:00 15 00 oc 01 14 00 64 00 00 11 6E 00 02 00 00 ; Point 64 is actually 

LBA - 1172:00 15 00 oc 01 14 00 64 00 00 11 6E 00 02 00 00 ; point AO (first track number). 

LBA - 1173:00 15 00 oc 01 14 00 64 00 00 11 6E 00 02 00 00 ; The less-than-clever drive has 

LBA - 1174:00 15 00 oc 01 14 00 64 00 00 11 6E 00 02 00 00 ; clumsily invalidated it. 

LBA - 1175:00 15 00 oc 01 14 00 64 00 00 11 6E 00 02 00 00 ; Also note that all addresses go 

LBA - 1176:00 15 00 oc 01 14 00 64 00 00 11 6E 00 02 00 00 ; to sector 116E! 

LBA - 1177:00 15 00 oc 01 14 00 64 00 00 11 6E 00 02 00 00 ; 

LBA - 1178:00 15 00 oc 01 14 00 65 00 00 11 74 00 00 00 00 ; Sharp move of addresses 

LBA - 1179:00 15 00 oc 01 14 00 64 00 00 11 6E 00 02 00 00 ; from 116E to 1174 (+6). 

LBA - 117A: 00 15 00 oc 01 14 00 65 00 00 11 74 00 00 00 00 ; This is the discontinuity 

LBA - 117B:00 15 00 oc 01 14 00 65 00 00 11 74 00 00 00 00 ; of the SEEK on NEC drive! 

LBA - 117C:00 15 00 oc 01 14 00 65 00 00 11 74 00 00 00 00 

LBA - 117D:00 15 00 oc 01 14 00 65 00 00 11 74 00 00 00 00 

LBA - 117E:00 15 00 oc 01 14 00 65 00 00 11 74 00 00 00 00 

LBA - 117F:00 15 00 oc 01 14 00 65 00 00 11 74 00 00 00 00 

LBA - 1180:00 15 00 oc 01 14 00 65 00 00 11 74 00 00 00 00 

LBA - 1181:00 15 00 oc 01 14 00 66 00 00 11 7A 00 00 3B 45 

LBA - 1182:00 15 00 oc 01 14 00 66 00 00 11 7A 00 00 3B 45 

LBA - 1183:00 15 00 oc 01 14 00 02 00 00 11 7F 00 00 34 92 ; 117F - ... 

LBA - 1184:00 15 00 oc 01 14 00 66 00 00 11 7A 00 00 3B 45 

LBA - 1185:00 15 00 oc 01 14 00 66 00 00 11 7A 00 00 3B 45 

LBA - 1186:00 15 00 oc 01 14 00 66 00 00 11 7A 00 00 3B 45 

LBA - 1187:00 15 00 oc 01 14 00 02 00 00 11 81 00 00 34 92 ; 117F - 1181 is the range 

LBA - 1188:00 15 00 oc 01 14 00 02 00 00 11 7F 00 00 34 92 ; of addresses taken by 

LBA - 1189:00 15 00 oc 01 14 00 02 00 00 11 7F 00 00 34 92 ; subchannel information for 

LBA - 118A: 00 15 00 oc 01 14 00 02 00 00 11 81 00 00 34 92 ; point == 2 

LBA - 118B:00 15 00 oc 01 14 00 02 00 00 11 80 00 00 34 92 

LBA - 118C:00 15 00 oc 01 14 00 02 00 00 11 81 00 00 34 92 

LBA - 118D:00 15 00 oc 01 14 00 66 00 00 11 7A 00 00 3B 45 

LBA - 118E:00 15 00 oc 01 14 00 64 00 00 11 8B 00 02 00 00 ; Look! Here is a sharp move 

LBA - 118F:00 15 00 oc 01 14 00 64 00 00 11 8B 00 02 00 00 ; from address 1181 to address 

LBA - 1190:00 15 00 oc 01 14 00 64 00 00 11 8B 00 02 00 00 ; 118B - 10 sectors are omitted. 

LBA - 1191:00 15 00 oc 01 14 00 64 00 00 11 8B 00 02 00 00 ; This is not simply the head 

LBA - 1192:00 15 00 oc 01 14 00 64 00 00 11 8B 00 02 00 00 ; beat, since these sectors 

LBA - 1193:00 15 00 oc 01 14 00 64 00 00 11 8D 00 02 00 00 ; are missing from 

LBA - 1194:00 15 00 oc 01 14 00 64 00 00 11 8D 00 02 00 00 ; subchannel data! And they 

LBA - 1195:00 15 00 oc 01 14 00 64 00 00 11 8B 00 02 00 00 ; are exactly the ones that 

LBA - 1196:00 15 00 oc 01 14 00 65 00 00 11 92 00 00 00 00 ; contain the attributes of track 0. 

LBA - 1197:00 15 00 oc 01 14 00 65 00 00 11 92 00 00 00 00 ; Conseguently, track 0 is still 

LBA - 1198:00 15 00 oc 01 14 00 65 00 00 11 92 00 00 00 00 ; present on the disc (otherwise, 

LBA - 1199:00 15 00 oc 01 14 00 65 00 00 11 92 00 00 00 00 ; these sectors would be returned) . 



Chapter 6: Anti-Copying Mechanisms 319 

Here, the "drift" is about 10 sectors or, sometimes, even smaller. However, the 
sectors themselves are absolutely out of order, and there are no zero points. Sectors 

with addresses ll85h and 1186h (where the attributes of tracks 0 are actually stored) 
are missing altogether. Instead, the drive has positioned the head to addresses ll8Bh 

and 118Dh, as a result of which the number of points 64h (points AOh before invalida¬ 
tion) has grown outrageously. In addition to all this, the absolute sector addresses, for 

some unknown reason, moved to the field of relative addresses. If our protection tries 
to analyze the subchannel information in accordance with the standard, it would cer¬ 
tainly go at least a little crazy. 

Thus, despite of the awkwardness and difficulties involved in implementing such 
a protection mechanism, it can still be done so as to ensure that the key disc is recog¬ 

nized with confidence on all existing drive models. Is it, however, worth implement¬ 
ing? In other words, how can we crack a disc protected in such a way? 

Well, in this case cracking is a tough job. In principle, a disc of this type can be 

copied. However, neither Clone CD nor Alcohol 120% are enough for this purpose, 
and not every drive model will be able to tackle the problem. Only those drive models 
that read the TOC with confidence and return the attributes of non-standard points 
are suitable for cracking, because the protection mechanism can be bound either to the 
TOC or to nonstandard point attributes. But wait, you might say. The protection can’t 
rely on the TOC availability and attributes of a zero point. This will render the pro¬ 
gram unusable on some drive models! True enough. However, if the drive agrees to 

read the TOC, why don’t we do this? 
If the drive used for cracking doesn’t allow for the reading of the TOC contents, 

the hacker won’t be able to restore the original TOC (unless he or she decides to dis¬ 

assemble the entire protection mechanism). Therefore, the copied disc will be usable 
only on the hacker’s own drive! 

Provided that the qualified hacker has a drive capable of reading TOC, however, 
he or she can easily copy the protected disc. It is enough to read the TOC (using 
the read toc command), and then read the disc contents at the subchannel level 
(using the seek/read subchannel commands) and the contents of the main channel 

(the read cd command). After this, all that remains is to form CCD, IMG, and SUB 
files, and, using Clone CD, burn them into the disc. This, however, is easier said than 
done. Not every hacker, let alone normal users, can carry out this task successfully. 

Track with Non-Standard Number 

Implanting fictitious tracks with non-standard numbers into the TOC ensures the 

creation of a strong, elegant, and non-conflicting form of protection. We’ll discuss 
everything in due order. According to the standard, the numbers of normal tracks can 
take values ranging from 1 to 99 (4Bh) inclusively. Track 0 belongs to the disc Lead-in 

and is never explicitly mentioned in the TOC (see the "Disc with Track Number Zero" 



320 Part III: Protection against Unauthorized Copying and Data Recovery 

section of this chapter). Track AAh (170) belongs to the disc Lead-out area and also is 
never present in the TOC. Tracks with numbers AOh, Alh, A2h, BOh, Blh, B2h, B3h, B4h, 

Clh, and C2h are used for storing control information and are interpreted in a special 
way, specific to each number. In particular, the starting address of track Alh contains 

the number of the last track of the current session, stored in the PMin field. 
According to the standard, the drive is not allowed to process tracks with non¬ 

standard numbers, and these tracks must be ignored. Thus, when creating a track with 
a non-standard number, we can be absolutely sure that it won’t drive your CD-ROM 
drive crazy and won’t impair disc readability. There is a certain probability, though, 

that the non-standard track number that we have chosen, with time, will pass into the 
group of standard numbers, making drive behavior unpredictable. This risk, however, 
is negligible, because the format of the CD-ROM storage media doesn’t change every 

day and already contains everything that could be needed. Thus, it is unlikely that the 
developers will add new points there, or that these points will match the one that we 

have chosen. Therefore, the protection mechanism that is proposed in this section cor¬ 
responds both to the spirit and letter of the standard. 

However, if the protected disc is correctly processed by the drive, what are the 

problems associated with its copying? The point is that there is no easy way for the 

copier to become aware of the existence of nonstandard tracks. Even when reading 

the raw TOC (using the READ TOC command in format 2), the drive does not return 

the attributes of nonstandard tracks, so the ’’raw mode” is questionable. Getting your 

hands on tracks of this type is possible only at the subchannel level by reading the 

contents of the Lead-in area using the seek/read subchannel commands (remember 

that tracks with non-standard numbers must be placed into sessions other than the 

first, because the Lead-in area of the first session is not available at the interface level). 

For the protection mechanism, it will be enough to scan the Lead-in area of the 

appropriate session to check for the presence of specific predefined track numbers. 

If tracks with predefined numbers happen to be missing, then we are dealing with 

an unauthorized copy instead of the original. Reading the subchannel data of the Lead- 

in areas of the second and all following sessions can be carried out by any drive, although 

some do this awkwardly. For instance, non-standard number X can be replaced by the 

number 64h + (x - AOh). The NEC drive, for example, interprets the number ABh as 

6Fh. Consequently, it is necessary to impose certain limitations on the choice of non¬ 

standard track numbers. For example, for reasons of compatibility and eliminating 

conflicts, it is no recommended to choose numbers 65h...9Fh, because the drive might er¬ 

roneously interpret the non-standard track number as being standard. Suppose, for in¬ 

stance, that you have chosen the 66h track number, then 64h + 66h - AOh == 2Ah (42 

in decimal notation). And track 42 is a standard track number. 

Now, let’s proceed with our traditional experiments. Open the CCD image that 
remains from our previous experiments with track 0, change the string "Point = 0x00” 
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to "Point = Oxab" (naturally, instead of OxAB, you can choose any other value, though 
taking into account the above-mentioned limitations for non-standard track num¬ 
bers). If you haven’t got a CCD image, proceed as follows: 

1. Using your favorite burner, prepare a CD containing two sessions, each containing 

one track. 

2. Create a disc image in the Clone CD format. Note that any other compatible cop¬ 
ier (Alcohol 120%, for example) can be used for this purpose. 

3. Open the CCD file in any text editor (for example, you can use Windows Notepad, 
or simply press <F4> in FAR Manager). 

4. Increase the value of the TocEntries field by one. 

5. Directly after track 2 (Session = 2, Point = 2), add another entry, which will have 
a Point equal to ABh or any other non-standard value of your choice. The contents 
of the other fields of this entry are of no importance, and you can use them for 

storing the key information. 

6. To preserve the consistency of the chosen numbering system, increase the values 
of all further entries by one. 

7. Save the changes in the edited file. For this purpose, you can press <F2> or 
<Ctrl>+<S> (Attention: The notepad version built into Windows 9x doesn’t react to 
this keyboard shortcut. Notepad built into Windows NT/2000 will, however). 

Proceeding one way or another, you should obtain approximately the following 
result (because of limited space in this book, Listing 6.50 only contains a fragment of 

the resulting file): 

Listing 6.50. A fragment of the CCD file containing a non-standard track number 

[Entry 12] 

Session=2 

Point=0xAB 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=3 

PSec=l 

PFrame=66 

PLBA=13458 
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Having burnt the resulting image onto a CD, make sure that it is correctly readable 
by all drives that you have at your disposal. Make sure that it also doesn’t conflict with 

anything. Now, read the TOC contents and check to see whether our non-standard 
track number is present there: 

Listing 6.51. The raw TOC contents with a missing non-standard track 

KPNC$F:\.PHCK3\src\etc\RAW.CD.READ>CD_RAW_TOC_READ.exe 1.1 

RAW TOC READER by Kris Kaspersky 

* * * TOC * * * 

session number 

| ADR/control 

| | TNO 

I I I point 

| | | | AM:AS:AF 

I I I I I I I zero 

1 1 1 1 1 1 1 1 PM: : PS: : PF 

01 14 00 AO 00 00 00 00 01 00 00 

01 14 00 Al 00 00 00 00 01 00 00 

01 14 00 A2 00 00 00 00 00 ID 21 

01 14 00 01 00 00 00 00 00 02 00 

01 54 00 BO 02 3B 21 03 16 0E 22 

01 54 00 CO A2 C8 E0 00 61 IB 15 

02 14 00 AO 00 00 00 00 02 00 00 

02 14 00 Al 00 00 00 00 02 00 00 

02 14 00 A2 00 00 00 00 03 18 17 

02 14 00 02 00 00 00 00 03 01 21 

02 54 00 BO 04 36 17 01 16 0E 22 

It appears that the non-standard track number was not written to the disc. In real¬ 

ity, however, this assumption is incorrect. The non-standard track number was writ¬ 

ten, but it is unlikely that it was read by the drive. Actually, the drive has simply re¬ 

fused to return the attributes of the non-standard track, pretending that no such track 

was there at all. At the same time, this is not a defect of a specific drive model. 

All drives (or, at least, all of those available to me) behave in this way! Now, let’s look 

at the results from reading the Lead-in area of the second session at the subchannel 

level. Naturally, to read the subchannel data of the Lead-in area, we must know its 

starting address. How do we determine it? Actually, this is an easy task. Open the CCD 

file and find an entry, for which the session is 1 and the point is A2h (it contains the 

starting address of the Lead-out area of the first session). 
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Listing 6.52. The starting address of the Lead-out area of the first session 

[Entry 2] 

Session=l 

Point=0xa2 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=0 

PSec=29 

PFrame=33 

PLBA=2058 

It can be seen clearly that the absolute address of the Lead-out area of the first ses¬ 
sion is 00:29:33 (or 2,058 in the LBA format). Increase it by the length of the Lead-out 

area (30 seconds or 2,250 in the LBA format), and you will obtain the absolute address 

of the Lead-in area of the second session, which, in this case, is 00:59:33 (or 4,308 in 
the LBA format). 

Now all that remains is to start the seek_and_Q.exe utility (see the companion CD) 

and analyze the displayed result. 

Listing 6.53. The contents of the TOC read at the subchannel level on the TEAC 
drive contains a non-standard track number 

KPNC$F:\.PHCK3\src\etc\RAW.CD.READ>seek_and_Q.exe 1.1 4308 4444 

seek CD-ROM & read ( ̂ -subcode by KK 

LBA - 10D4 : 00 15 00 OC 01 14 00 A0 00 00 22 92 00 00 11 6E 

LBA - 10E9: 00 15 00 OC 01 14 00 02 00 00 34 92 00 00 11 7F 

LBA - 10EA: 00 15 00 OC 01 14 00 AB 00 00 34 B3 00 00 11 85 

LBA - 10EB: 00 15 00 OC 01 14 00 02 00 00 34 92 00 00 11 81 

LBA - 10EC: 00 15 00 OC 01 14 00 AB 00 00 34 B3 00 00 11 85 

LBA - 10ED: 00 15 00 OC 01 14 00 AB 00 00 34 B3 00 00 11 85 

LBA - 10EE: 00 15 00 OC 01 14 00 AB 00 00 34 B3 00 00 11 86 

LBA - 10EF: 00 15 00 OC 01 14 00 A0 00 00 22 92 00 00 11 8B 

LBA - 10F0 : 00 15 00 OC 01 14 00 AB 00 00 34 B3 00 00 11 86 

LBA - 10F1: 00 15 00 OC 01 14 00 A0 00 00 22 92 00 00 11 8B 

LBA - 10F2 : 00 15 00 OC 01 14 00 A0 00 00 22 92 00 00 11 8B 
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That’s it — non-standard track numbers are present in the TOC. Let’s take a look 
at how other drive models behave. The most interesting result is that generated by the 
NEC drive, which is the most capricious in this respect. 

Listing 6.54. The TOC contents read at the subchannel level on the NEC drive 
also contain the non-standard track number 

LBA - 1188:00 15 00 0C 01 14 00 66 00 00 11 7A 00 00 3B 45 

LBA - 1189:00 15 00 0C 01 14 00 6F 00 00 11 86 00 00 34 B3 

LBA - 118A:00 15 00 0C 01 14 00 6F 00 00 11 87 00 00 34 B3 

LBA - 118B:00 15 00 0C 01 14 00 6F 00 00 11 85 00 00 34 B3 

LBA - 118C:00 15 00 0C 01 14 00 6F 00 00 11 87 00 00 34 B3 

LBA - 118D:00 15 00 0C 01 14 00 6F 00 00 11 85 00 00 34 B3 

LBA - 118E:00 15 00 0C 01 14 00 02 00 00 11 80 00 00 34 92 

Although there is no track with the number ABh, there is still a track with 
the number 6Fh, which, taking into account the formula provided above, means: 
A0h + 6Fh - 64h == ABh, i.e., exactly the result that we need. 

Apparently, copying the protected disc using Alcohol 120% or Clone CD goes 
normally (the system doesn’t freeze and there are no explosions or smoke). However, 

after closer investigation, you’ll discover no non-standard track numbers in the sub¬ 
channel data of the second session. These absolute addresses will contain attributes of 
different tracks. Look for yourself: 

Listing 6.55. A copy of the protected disc won't contain any non-standard tracks 

LBA - 10EB:00 15 00 0C 01 14 00 02 00 00 34 92 00 00 11 7F 

LBA - 10EC:00 15 00 0C 01 14 00 A0 00 00 22 92 00 00 11 86 

LBA - 10ED:00 15 00 0C 01 14 00 A0 00 00 22 92 00 00 11 86 

LBA - 10EE:00 15 00 0C 01 14 00 A0 00 00 22 92 00 00 11 86 

LBA - 10EF:00 15 00 0C 01 14 00 A0 00 00 22 92 00 00 11 87 

Proceeding according to the method described above, the protection mechanism 
will easily distinguish the original disc from its unauthorized copy. At the same time, 
replication of the original discs doesn’t require any special equipment and can be easily 

carried out on standard equipment (a normal recorder and Clone CD/Alcohol 120% 
are all that you’ll need). This protection will be no less successful when manufacturing 
printed CDs — a topic, however, which deserves a separate discussion. 

Now, let’s continue with practical examples, i.e., with cracking. Although this pro¬ 

tection is strong and can withstand attacks carried out using the automatic copiers 
in existence at the time of writing, an experienced hacker must be capable of copying 
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the original disc. It is enough to start an analyzer of subchannel data (the seek and Q 

utility is suitable for this purpose) and read the raw TOCs of the second and all fol¬ 
lowing sessions of the disc (if there are any). There, along with other information, we 
will discover the non-standard track number: 

Listing 6.56. Identification of the protected disc 

ADR/Control 

| TNO 

| | Point 

1 1 1 + PLBA + +current address+ 

LBA - 10EB:00 15 00 OC 01 

1 

14 

1 

00 

1 

02 

1 

00 00 34 

1 

92 

i 

00 00 11 

1 

81 

LBA - 10EC:00 15 00 OC 01 14 00 AB 00 00 34 B3 00 00 11 85 

LBA - 10EF:00 15 00 OC 01 14 00 A0 00 00 22 92 00 00 11 8B 

Now all that remains is to open the CCD image of the original disc created using 
Clone CD and add an entry carrying the track with a non-standard number. However, 
this is easier said than done... As soon as you attempt to do this, a large number of 
questions arise. How can we transform subchannel data into a format understandable 
by Clone CD? Where in the CCD file should we add the new entry? Let’s start by an¬ 
swering the second question. When viewing the subchannel information from the 
original disc, it is easy to see that the track with the non-standard number ABh follows 
track 02h and precedes track AOh (see Listing 6.56). On old drives with loose heads, this 
pattern is harder to detect, because the subchannel data are returned chaotically, and, 
therefore, instead of the addresses, to which the head was positioned, we have to rely 
on the absolute addresses returned in the subchannel information, as already men¬ 
tioned. Open the CCD image and find a location between tracks 02h and AOh... What? 
If we believe the information for the CCD file (or, to be more precise, the information 
returned by the drive in response to the read toc command, on the basis of which the 
CCD file is created), then the entry with track 02h is followed by the entry with track 
BOh (the starting address for further writing), and the entry with track AOh (the num¬ 
ber of the first track of the current session) is the first entry of the current session! 
How should we interpret this? The fact is that the starting address for further writing is 
not stored in subchannel data. Because of this, there is no track BOh present in these 
data. Furthermore, because the TOC of each session is duplicated in the sub-channel 
data many times, it becomes clear why track ABh is followed by track AOh — after all, 
the TOC is "looped” and simply has to "catch itself by the tail" to satisfy considerations 
of reliability and fault tolerance. 

Thus, we must find the entry with track 02h and add a new entry with track ABh 

immediately after it. The Session field must be set to 2 (because we were reading 
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the Lead-in area of the second session), the adr field is equal to the four most signifi¬ 
cant bits of the ADR/Control field, and after Control — four least significant bits. In 
our case ADR/Control == 14h, consequently, ADR = 1, and Control = 4. TrackNo = 0, 

because we are in the Lead-in area (the control track with number 0). Theoretically, 
the fields AMin, ASec, AFrame must contain the addresses of the subchannel data corre¬ 

sponding to them. However, according to common agreement, they are considered to 
be equal to zero, which corresponds to the alba address equal to -150 (minus one 

hundred and fifty). The Zero field is equal to zero, as its name implies, and the fields 
PMin: PSec: PFrame are equal to the plba fields corresponding to them, represented in 
the M: s: f format. You should remember that some drives tend to swap plba and alba 

fields. In our case, the plba field of the subchannel data is 34B3h, which corresponds to 
the 03:01:66 absolute address. 

That’s all. Having generalized all this material, we will obtain a nice entry that 
looks approximately as follows: 

Listing 6.57. Forming an entry for copying protected discs 

[Entry 12] 

Session=2 

Point=0xAB 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=3 

PSec=l 

PFrame=66 

PLBA=13458 

Now increase the contents of the TocEntries field by one and renumber all trail¬ 
ing Entries so that the newly added entry doesn’t disrupt their consistent numbering, 
then burn the edited image to a new disc (do not add the [track ab] field). 

If everything has been done correctly, the newly-burnt disc will represent an un- 
distinguishable copy of the original and the protection will fail to recognize it as 
a copy. However, not everyone is capable of doing this. As we have already seen, 
to crack this protection successfully, the hacker must have fairly impressive knowledge 
in the field of CD organization and know specific features of their processing by 
various drive models. 
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Data Track Disguised as Audio 

What is the difference between audio tracks and data tracks? What will happen if we 
label a data track as an audio track? At first glance, nothing extraordinary will happen, 

and the test track will be easily readable using the read cd command. The only differ¬ 
ence will be that automatic correction of the Q- and P-level errors won’t be carried out 
by the drive. However, bad sectors can be corrected manually. The protection mecha¬ 
nism, knowing the true format of the sectors being read, can carry out this correction 
without difficulty. However, this is not true for software copiers. Therefore, if the disc 
is copied many times, the number of read errors will grow constantly. At some point, 
the error-correcting capabilities of the Reed-Solomon codes will become insufficient, 
and the next copy will be unusable. However, with the quality of optical media today 

(especially provided that they are handled carefully), the number of Q- and P-level er¬ 
rors is negligible. Therefore, the copies of at least the first three generations are guar¬ 

anteed to be readable even by old, loose, no-name drives. Therefore, this approach 
doesn’t promise dependable protection. 

This type of reasoning is typical for second-rate specialists that consider data tracks 
to differ from audio tracks only in a single bit of the ADR/Control bit (this is the third bit, 
counting from zero), and, at the same time, wonder why their drives don’t quite grab 
audio tracks correctly. Experts, after digging through the specifications and having dis¬ 
assembled a couple more CD-drive firmware versions, will discover at least five concep¬ 
tual differences between the processing of audio tracks and data tracks. Here they are: 

□ Exact positioning to the specified audio sector is virtually impossible, because the 
addresses of the sectors that currently float over the optical head are not stored in 
the sector itself, but rather reside in the Q subcode channel that is spread over the 

spiral track. Simply speaking, subchannel data from 748 frames or 8 sectors (the 
more correct name is ’’block”) are joined into packets. Each packet contains four 

reference points, which, in the ideal case, correspond to the error of ±1 sector. 
In practice, this error is usually larger. The standard sets the maximum allowed 
level of error equal to ±1 second (or ± 75 sectors). Some drive models, however, 
deliver considerably worse results. For example, my TEAC drifts forward by about 
500 sectors! And there is practically no possibility to read a sector with the address 

specified beforehand. This situation, which satisfies the requirements of audio 
tracks, is absolutely unacceptable for data tracks. Therefore, data tracks are forced 
to supply a special field containing their own address in their header. Rough posi¬ 

tioning to the sector is carried out on the basis of subchannel data. Fine position¬ 
ing, on the other hand, is carried out on the basis of their headers. As a result, 
the drive always reads the exact sector that was requested. 

□ The concept of the "sector” is absolutely inapplicable to audio tracks. The do not 

contain any sectors as such. Instead, they contain so-called "blocks," which consist 
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of the sequences of unnumbered frames. At the same time, block boundaries are 
not strictly fixed, and the block can start from any frame, for which the drive has 
a fancy and which is located within the positioning limits. Therefore, when reading 
a data track in the audio mode, we cannot be sure that the sectors being read start 

from the head, and not from the tail. 

□ In contrast to audio blocks, data sectors are scrambled. The need for scrambling 
depends not on the type of the current track, but on the presence of a sync group 
and correct Mode value in its header. A data track written as audio track is forcibly 
scrambled in the course of writing (which ruins the Mode), but is not descrambled when 
reading. In other words, when reading a disc, the drive reads information different 
from that was written to it. 

□ Some drives (Plextor, for example) carry out forcible audio correction of the data 
being written, explaining this by their yearning to ensure better sound quality. No 
wonder that an attempt at writing a data track in the audio mode ruins it totally. 

□ As already mentioned above, audio tracks do not contain Q- and P- correction 
codes. Therefore, the drive doesn’t correct them, which results in error accumula¬ 
tion, although the copies of the first three to five generations are readable even 
without error-correcting codes. 

Now, it becomes clear why the task of retrieving exact copies of audio tracks is so 
difficult (if even possible). However, can we use this in practice? Let’s write a data track 
as an audio track and experiment with it. This will help us to answer our question. 

Naturally, this task cannot be accomplished directly using standard burners. They 
won’t understand our cunning plan. In the best case, they will display something like 
’’Illegal mode for this track”, and in the worst case, even swear at us, so to speak. Well, 
let’s try to outflank them. Using Ahead Nero, Stomp Record Now!, or any similar pro¬ 
gram, create a normal CD containing one or more data tracks. Then, using Clone CD 
or Alcohol 120%, create a disc image and tweak its CCD file. All that we need is to find 
an entry with a point equal to the number of our track and change the contents of the 
Control field to 0 or 2 (which corresponds to an audio track without copyright pro¬ 
tection and audio track with copyright protection, respectively). Then change the track 
mode from 1 to 0 (wee the [track] section). 

Listing 6.58. Creating a protected disc image 

[Entry 11] [Entry 11] [TRACK 1] [TRACK 1] 

Session=2 Session=2 MODE=l MODE=l 

Point=0x02 Point=0x02 

ADR=0x01 ADR=0x01 [TRACK 2] [TRACK 2] 

Control=0x04 Control=0x02 MODE=l MODE=0 

TrackNo=0 TrackNo=0 INDEX 1=0 INDEX 1=0 
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AMin=0 AMin=0 

ASec=0 ASec=0 

AFrame=0 AFrame=0 

ALBA=-150 ALBA=-150 

Zero=0 Zero=0 

PMin=3 PMin=3 

PSec=l PSec=l 

PFrame=33 PFrame=33 

PLBA=13458 PLBA=13458 

It is not necessary to correct subchannel data. On the contrary, it is recommended 

to leave them unchanged. This will rule out playback of this track in the audio mode 

and relieve you (and your users) from the serious psychological shock caused by lis¬ 

tening to a "symphony" of data, disguised as audio. What will happen if you correct 

the subchannel data and try to play back this "audio track" on a normal audio player 

or PC CD-ROM drive? Well, actually, nothing too horrible, except for a cacophony of 

noise. If you have ever loaded software from a magnetic tape for tape recorders into 

computers like ZX-Spectrum, and have left the modem’s speaker on during data 

transmission, then you can imagine the sound that your poor users will hear after they 

load a disc like this into the drive. It is possible to become a stutterer, especially if the 

volume is set to maximum (by the way, some specialists say that it is possible even to 

damage the amplifier output and speakers. In my opinion, these rumors are ground¬ 

less. Neither the maximum allowed level of the output signal nor the allowed fre¬ 

quency spectrum can be exceeded in this case, and a properly designed amplifier, or 

speakers, won’t suffer any damage). 

Nevertheless, if you use the "digital playback" mode of tracks, for which Windows 

2000 provides built-in support, then, independently on the contents of the subcode 

channel, data tracks labeled as audio tracks will still be played as audio! And certain 

drives (such as NEC, for example) will also play these tracks back in audio mode. 

So what? Let them do it! To all of the indignant cries and screams of surprised users, 

we will simply answer that the program loads itself through the audio channel, as it 

was long ago. Isn’t it the perfect remedy against nostalgia? 

Now let’s read the image of the disc with the audio track and compare its contents 

to the original. I assure you that the result will exceed all of your expectations! Let’s 

start with a byte-by byte comparison of the IMG files that carry the data of the main 

channel. For this purpose, you can use any comparison utility (either fc.exe supplied 

with Windows, or my favorite — c2u from Professor Nimnul). Start it in approxi¬ 

mately the following way: "fc.exe image.img image_t.img /b > image.dif", where 

image.img is the image taken from a "normal" disc, and image_t.img is the image 

taken from the disc with the "audio" track. 
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Fig. 6.18. A data track disguised as audio 

After several minutes of waiting (in contrast to c2u, the FC utility is very slow), 

a file named IMAGE.DIF will appear on your hard disc, with a size of about 50 MB. 
This means that there actually are differences between the copy and the original, and 
these differences are not just numerous, but large in the extreme! 

Listing 6.59. A fragment of the original disc 

0049D2B0: : 00 FF FF FF FF FF FF FF 1 FF FF FF 00 00 29 32 01. .) 2© 

0049D2C0: : 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00. 

0049DBE0 00 FF FF FF FF FF FF FF 1 FF FF FF 00 |6T 01 33 M. .r©3© 

0049DBF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 

0049DC00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 

0049DC10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 

0049DC20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 

0049DC30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 

0049DC40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 

0049DC50 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00. 

Listing 6.60. A fragment of the copied disc 

0049D2B0: 00 FF FF FF-FF FF FF FF-FF FF FF 00-00 29 32 01 yyyyyyyyyy...)2© 

0049D2C0: 00 00 00 00-00 00 00 00-00 00 00 00-00 00 00 00 . 
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0049DBE0 00 FF FF FF-FF FF FF FF-FF FF FF 

IsJ i o
 

o
 81 33 .jyJ .yyyyyyyyyy.®?3a 

0049DBF0 00 28 00 IE-80 08 60 06-A8 02 FE 81-80 60 60 28 . (...Amr*?®??rr' ( 

0049DC00 28 IE 9E 88-68 66 AE AA-FC 7F 01 E0-00 48 00 36 (Az?hfo?uA©a...H...6 

0049DC10 80 16 E0 0E-C8 04 56 83-7E El E0 48-48 36 B6 96 M^aj9E4V?~aaHH6-||u 

0049DC20 F6 EE C6 CC-52 D5 FD 9F-01 A8 00 7E-80 20 60 18 oi?IROyY©?.'t 

0049DC30 28 0A 9E 87-28 62 9E A9-A8 7E FE A0-40 78 30 22 (Hz3(bzM?~?a@x0” 

0049DC40 94 19 AF 4A-FC 37 01 D6-80 5E E0 38-48 12 B6 8D 0 i ?Ju7©OHAa8H j-|| ? 

0049DC50 B6 E5 B6 CB-36 D7 56 DE-BE D8 70 5A-A4 3B 3B 53 |a|E6?V??OpZfl;;S 

The first thing that catches our eye is that the Pre-gap area of the second track, 
which earlier was filled with zeros, is now stuffed with data, looking very much like 
garbage and not corresponding to any of the data on the source data track. 
Let’s choose any sequence, such as ”lE 9E 88 68 66 AE aa” (in the listing, it is in bold) 
and try to find it in the source IMAGE.IMG file. There won’t be anything of the 
sort here! 

The absolute sector address placed into its header (in the listing, it is framed) also 
bears a resemblance to the ravings of a madman. Look: The a-sec field takes an outra¬ 
geously high value, as high as 8lh, which certainly is a mistake. At maximum, this field 
should contain the value not exceeding 59h. The Mode field, which in this case contains 
6lh, is also invalid. 

Perhaps, this is simply a minor error? No. After reviewing sector headers, you’ll 
discover that they all are like this: 

Listing 6.61. Invalid sector headers 

0049DBE0: 00 FF FF FF-FF FF FF FF-FF FF FF 00-02 81 33 61 yyyyyyyyyy ®?3a 

0049E510: 00 FF FF FF-FF FF FF FF-FF FF FF 00-02 81 34 61 yyyyyyyyyy ®?4a 

0049EE40: 00 FF FF FF-FF FF FF FF-FF FF FF 00-02 81 35 61 yyyyyyyyyy ®?5a 

0049F770: 00 FF FF FF-FF FF FF FF-FF FF FF 00-02 81 36 61 yyyyyyyyyy ®?6a 

004A00A0: 00 FF FF FF-FF FF FF FF-FF FF FF 00-02 81 37 61 yyyyyyyyyy ®?7a 

There you are. Well, to hell sector headers! For the moment, we have to deal with 
a more urgent question: Where are our source data, and what is this garbage that is 
read from the audio track? What, or who, is responsible for all this — disc failures, 
audio correction or scrambling? 

The right answer is scrambling. Having detected a sync group signature 
00 ff ff ff ff ff ff ff ff ff ff 00 in the header along with mode set to 1, the 
drive ignored the track type specified in the TOC and interpreted this sector as data. 
Based on this result, it scrambled all of the bytes in this sector, from 12 to 2,351, inclu¬ 
sively. Not only the user data area, but also the mode field were scrambled. Conse¬ 
quently, further reading of this sector belonging to the data sectors wasn’t obvious 
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enough, and the drive, having looked into the TOC, decided that it deals with "audio" 
sector, which doesn’t need to be descrambled. As a result, we have obtained scrambled 
data in the output that were not recovered. 

This "feature" of drive behavior is not authorized by the standard. On the contrary, 

the standard describes all of these aspects too ambiguously and obscurely and, there¬ 
fore, most drives (the vast majority) forcibly scramble the "audio" data being written. 

Some drives write them "as is." To tell the truth, the possibility of reading non- 

scrambled sectors is not guaranteed, because they might contain regular data se¬ 

quences that confuse the read head, leading to errors (see "Weak Sectors"). Therefore, 

it is recommended first to work with drives that forcibly scramble sectors, such as NEC 

and TEAC. 

Having passed the read data through a descrambler, which can be borrowed from 
the ElbyECC.dll library supplied as part of Clone CD, we will recover the sectors man¬ 

gled by the scrambler in their initial form, with which our program will be able to 
work. Individual errors due to disc failures can be eliminated manually, because we 

have error-correcting codes at our disposal. If you decide to write your own Reed- 

Solomon decoder, you can use the above-mentioned ElbyECC.dll (don’t forget, how¬ 

ever, that if you distribute it as part of your product, you’ll violate the copyright of its 
developers). 

It would appear, then, that we have discovered a real gold mine! Since the contents 
of a data track labeled as an audio track are forcibly scrambled in the course of re¬ 

cording, an attempt to copy such a disc will result in its being scrambled once again. 
As a result, we will get absolutely different data (strictly speaking, this won’t be "differ¬ 

ent" data, because repeated scrambling is the same thing as descrambling, and the 
source "audio" track will be completely restored. However, since the protection 

mechanism also descrambles the data, it will be able to work only with its "own" disc. 
However, a copy of a copy will also produce the desired result. This idea, however, will 

not occur to every user). 

Alas! Because the mode field is also scrambled, the sector read from the protected 

disc will no longer be recognized by the drive as a data sector. Therefore, it won’t be 

forcibly scrambled, because of which the "protected" disc is copied quite normally. 

However, we have gone too far for us to surrender now, haven’t we? 

If we record "audio" tracks on a drive that doesn’t carry out automatic scrambling, 

and then try to copy them on any other drive model, these attempts will inevitably fail. 

This is because such drives carry out scrambling, which will irreversibly ruin the sector 

contents. It will be impossible to recover the sectors, even by creating a copy of copy. 
The only way out is to find a non-scrambling drive (which will be a difficult task in it¬ 

self). For instance, all of my attempts at doing so failed. Therefore, I simply patched 
the firmware of my CD recorder in such a way as to allow me to enable or disable sec¬ 

tor scrambling at will. Any drive that can be patched is suitable for this purpose 
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(TEAC, for example). Download the newest firmware version from the manufacturer’s 

site, then start the disassembler that understands the "language” of this processor and 
analyze the firmware operating algorithm. Remember that incorrectly patched firm¬ 

ware may render your drive totally unusable, because the patching procedure is con¬ 
tained in the firmware. If the latter ceases to operate, you can kiss your drive good-bye, 

because all of its circuitry will also cease to operate. Although the firmware patching is 

a realistic task, it requires fairly qualified hands to carry it out. 

Unfortunately, the developers of the protected application are in no better situa¬ 
tion, because in order to record original discs, they will require a similar drive, 

which is very hard to find on the market and no easier to create on one’s own. On the 

other hand, if you are strongly motivated, you’ll always find a way to implement your 

ideas! This protection mechanism is, however, wonderfully suitable for printed CDs, for 

which there are no limitations imposed on their logical structure. The task of copying 

a disc protected on the basis of this technology is practically unrealistic. Now let’s proceed 
with weak sectors, i.e., the sectors containing sequences unfavorable from the drive’s 

point of view. One of such sequence appears as follows — ...04 B9 04 B9 04 B9.... 

The unscrambled sector that contains this sequence in its body will be written without 

any problems. However, due to some design limitations, even the best drives will be 
unable to ensure its reading stability. Most drives will be unable to read it at all. This is 

because the physical representation of this sequence results in the creation of long 
chains of lands or pits, and a constantly changing HF signal is vitally important 

for correct drive operation. In other words, the drive is unable to read homogeneous 

areas of the spiral track. More detailed information on weak sectors is provided 

in Chapter I. Currently, the most important fact is that some drives are still capable 

of managing to find a way out by simply changing the starting position of the sector 
in the frame, which results in massive changes at the physical level of information 

representation. Consequently, a weak sequence ceases to be weak, and becomes 
normally readable by all drives. However, to copy such a disc, it is necessary to have 

a drive that effectively recognizes and correctly processes weak sequences (for 
instance, Plextor. For a complete list of models suitable for this purpose, see Clone CD 

Help system). 

On the other hand, drives that record weak sequences ”as is” are very useful for the 

high-quality simulation of the bad sectors, because sectors that contain weak se¬ 
quences are not readable at the physical level. This is better approach than trivial in¬ 

validation of the edc/ecc fields, which is easily detectable by protection mechanisms 
by means of reading sectors in raw mode. Beside this, weak sectors cause the drive to 

reduce speed and drag the read head for some time, thus creating a certain time delay 
that is caused by actual defective sectors (and most protection mechanisms rely on 

this). A sector with a tweaked edc/ecc field, on the contrary, is read almost instantly, 
thus giving itself away. In other words, weak sectors are useful not only for protection. 
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They provide rich opportunities for hackers and crackers as well. I hope that you have 

no objections to experimenting with them. 
So let’s open our old image of the original file (this must be the image taken from 

a normal disc, not the image of the protected disc damaged by scrambling). Change 

the data track attributes to audio, as we have done before. However, in addition to 

this, tweak the Sync and/or mode fields of several sectors with addresses known before¬ 

hand. Burn the image to the CD to make sure that the contents of sectors are now no 

longer scrambled, and the data read from the disc is exactly the data that were read to 

it (although, if the sector contains regular sequences, it might be unreadable, because 

scrambling was actually needed for data sectors). 

Now, fill these sectors with the sequence ...04 B9 04 B9 04 B9... and burn them 

once again. If your drive is not clever enough to choose the starting position of the 

sector in the frame, our sectors will be written in the most unfavorable way, and at¬ 

tempts at reading them will result in errors! By the way, if you stuff the disc with faulty 

sectors, its copying will be exceedingly complicated, especially if you place weak sectors 

in groups, ranging in size from 9 to 99 sectors, followed by a single key sector (i.e., 

a normal sector containing the key information). The point is that advanced protected 

disc copiers (Clone CD or Alcohol 120%), having detected that the disc contains lots 

of defective sectors that require a long time to read, allow the user to enable the mode, 

in which bad sectors are quickly skipped. In this case, having encountered a bad sector, 

the copier will skip the next 100 sectors, thus saving time on attempts at reading them. 

Protection mechanisms that bind to actual physical defects of the disc surface are easily 

deceived by this trick, because defects tend to accumulate and grow with the time. 

Therefore, implanting key information near the defective area is dangerous. Weak 

sectors, however, are not defective in the literal sense of the word. Therefore, they 

don’t prevent reading of the adjacent sectors. Because of this, we can easily rely on 

their existence! The copying of the protected disc in the fast skipping mode will skip 

not only weak sectors, but also key labels. The copying process in normal mode will 

take several hours (or more), the reasons for which we will discuss later. 

Incorrect Run-out as Protection Tool or X-Sector 

From the hacker’s point of view, Stomp Record Now! is interesting because it is practi¬ 

cally the only utility that secretly writes a special label to each disc being burnt. This la¬ 

bel is a kind of a ’’watermark,” the existence of which is not known to most users, and 

which obviously violates their privacy. However, let’s proceed in due order. 

The Randomly Writable mode in CD-RW discs is implemented using the Run-in/ 

Run-out blocks mechanism, closely related to the packet writing mode. Each packet 

starts from four Run-in blocks (three such blocks on DDCD media) and is terminated 

by two Run-out blocks (on DDCD media, there are three such blocks). Run-in/Run-out 
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blocks are normal sectors, but having an unusual value for the mode field in their head¬ 

ers (see Listing 6.62). Depending on the addressing mode, Run-in/Run-out blocks are 

either addressed as all the other sectors, or are excluded from the address space. 

Except for the packet-writing mode, Run-in/Run-out blocks are not used anywhere, 

however... 
Packet , 

Link Run-in Run-in Run-in Run-in User Data Blocks Run-out i Run-out 

Fig. 6.19. Run-in/Run-out blocks 

Listing 6.62. Extended interpretation of the MODE field 

Bits lf 6, 5 = 000 - User Data block 

= 001 - Fourth Run-in block 

= 010 - Third Run-in block 

= Oil - Second Run-in block 

= 100 - First Run-in block 

= 101 - Link block. Physical linking of EFM data 

= 110 - Second Run-out block 

= 111 - First Run-out block 

Bits 4, 3, 2 = 000 - Reserved 

Bits 1, 0 = 00 Mode 0 Data 

= 01 - Mode 1 Data 

= 10 - Mode 2 Data 

= 11 - Reserved 

The Stomp Record Now! program has an interesting feature for supporting Run-out 
blocks secretly implanted into the end of each data track, or, to be more precise, into the 
next-to-last sector of its Post-gap area, the header of which is slightly modified. 

Because there is only one Run-out block (although, according to the Orange Book, 
there must be at least two), and there are no Run-in blocks, in this case we are dealing 
with a standard violation. Whether it is intentional or not, remains a secret. Most 
likely, this is a kind of developer’s watermark or "Easter egg,” which complicates 
the copying of the original disc (in this section, we will use the term "original disc" 
to mean the disc created using the Stomp Record Now! program, and the next-to-last 
sector of the Post-gap area as a watermark sector or X-sector). 

The mode field of the X-sector, specifying the type of the track, instead of the 
actual track, is replaced by the "watermark" constant Elh (or, rarely, E2h), which cor¬ 
responds to the qualifier of the first Run-out block (see Listing 6.62). The three most 
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significant bits define the specific block qualifier, while the two least significant bits 
specify the track type. Thus, the "watermark" number in the general case is: 
Water Mark Value (WMV) == EOh | Track MODE, accordingly: Track MODE == MODE & 3, 

where Track mode is the track type and mode is the value of the appropriate field of 
the sector header. 

Besides this, the data area of the X-sector contains the identifier string and serial 
number of the drive that carries out disc burning (provided that this recorder is 

"acquainted" with Stomp Record Now!). 
The Yellow Book, also known as ECMA-130 (the basic standard for data CDs), al¬ 

lowed for only three types of tracks: MODEO, MODE 1, and MODE 2, and inter¬ 
preted all the others as errors. Applications designed in full accordance to the ECMA- 
130 standard are unable to determine the actual type of the X-sector, because they "do 
not know" that the six most significant bits of the mode field must be reset to zero. Such 

a sector cannot be discarded, but at the same time, it is impossible to pass it through 
Reed-Solomon decoder, because it is not known beforehand whether or not edc/ecc 

codes are present there. 

According to the standard, Pre-gap and Post-gap areas are intended exclusively for 
the positioning of the optical head1 and don’t contain user data. In normal operating 

mode, these sectors are never accessed (the standard allows us to rely only on sub¬ 
channel data), thanks to which the watermarks (like Run-in/Run-out blocks) have no 
effect on the drive’s operation. The drive doesn’t notice them at all. At the same time, 
the contents of the Pre-gap and Post-gap areas are actively used by various protection 
mechanisms for storing key marks, operating according to approximately the same princi¬ 
ple as key marks written into the engineering sectors of hard disks (71 and/or 72 tracks 

of the diskette). It is not unlikely that an unexpected conflict could arise between wa¬ 
termarks and key marks, rendering one of these parties fully or partially unusable. 
Therefore, it is not recommended to make excessive use of this technique. 

To discover if watermarks are present on the disc being investigated, we must read 
the next-to-last sectors of all of the Post-gaps in raw mode. For this purpose, it is pos¬ 
sible to use the cd_raw_sector_read utility of any other similar tool (for instance, 

Clone CD is very well suited for this). Now it remains to determine the absolute ad¬ 
dresses of the Post-gap ends for all tracks. This is easy. The absolute address of the last 
sector of the Post-gap area is equal to the starting address of the next track, minus 
sizeof (pre-gap) (starting address of the Lead-out area, if this track is the last one) 

1 Ancient drives were too primitive, and for decoding subchannel information (which, by the way, is 
spread over a large disc surface), they required a certain time, during which the optical head moved 
long ahead over the spiral track. Therefore, when attempting at positioning the head to the starting 
point of the track, a certain number of sectors was inevitably skipped. Therefore, the developers had 
to add several turns of "blank" information to the starting point of every track, to compensate for 
drop-out of sectors with meaningful information. 
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minus one. Accordingly, to find the next-to-last sector, this value must be 

decreased by one. In other words: x-sector address = (next track != Lead-out) 

?next track address - 3:lead out address - 2. 

The starting addresses of all tracks are stored in points with numbers from 01 to 99 
inclusively, and the starting address of the Lead-out area of the disc is stored in point A2h. 

Suppose that the disc being investigated contains only one track, and the starting address of 
the Lead-out area is 00:29:33 (see Listing 6.63). Then the address of the X-sector will 

be 00:29:31. 

Listing 6.63. Determining the Lead-out address 

[Entry 2] 

Session=l 

Point=0xa2 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=0 

ASec=0 

AFrame=0 

ALBA=-150 

Zero=0 

PMin=0 

PSec=29 

PFrame=33 

PLBA=2058 

Note that the absolute address 00:29:31 corresponds to LBA address 2056. 
Let’s memorize this value, because it will be encountered several times in our further 
experiments. Having passed the obtained address to the cd_raw_sector_read 

program, after a couple of seconds we will obtain its contents. Finding 
the "watermark sector” in the CD image created using Clone CD (or any other 
similar program) is slightly more difficult. It is, however, still possible. There are 
at least two methods of approaching this task: Knowing the size of one raw 
sector (2352 bytes) and the LBA address of the X-sector, we can compute the 
offset of the required sector in the file by simply multiplying both values 
(2352 * 2056 == 49C980h). Another approach is to open the image file using 
any HEX editor and carry out a context search for the following sequence: 
00 FF FF FF FF FF FF FF FF FF FF 00 00 29 31, i.e., Sync + address. 

No matter, which method we choose, the result will be the same. 
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Listing 6.64. Watermarks implanted into the next-to-last Post-gap sector by 
the Stomp Record Now! program: The incorrect track number in the sector 
header (Elh instead of 01 h) is marked in bold and framed, and the identifier of 
the recorder, on which the disc was burnt, is marked in bold 

0049C980 00 FF FF FF FF FF FF FF FF FF FF 00 00 29 31 II- .) lc 

0049C990 52 49 44 30 31 00 00 00 4E 45 43 00 00 00 00 00. .RID01_NEC_ 

0049C9A0 4E 52 31 31 00 00 00 00 02 58 56 00 00 00 00 00. . NR11.®XV_ 

0049C9B0 4E 45 43 20 20 20 20 20 20 20 20 20 20 20 20 20. .NEC. 

0049C9C0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20. 

0049C9D0 4E 52 2D 39 31 30 30 41 20 20 20 20 20 20 20 20. .NR-9100A. 

0049C9E0 32 58 56 32 32 38 31 53 31 31 31 20 20 20 20 20. .2XV2281S111. 

0049C9F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 
0049CA00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00. 

Standard copiers (Ahead Nero, in particular) do not copy the contents of the Pre¬ 
gap and Post-gap areas. Therefore, watermarks will be missing on the copied discs! 
To distinguish the original disc from its copy, the protection mechanism must: 
i) using the read toc (format 0x2 — full TOC) command, read the disc TOC in the 
raw mode; 2) read the Lead-out address of any session (for instance, that of the first 
session); 3) determine the address of the X-sector, and, using the read cd command, 
read it in raw mode; 4) analyze the contents of the mode field (15th byte of the sector 
header, counting from zero); if this value is larger than 2, then we are dealing with the 
original disc or a high-quality copy; 5) for paranoids, it is recommended to read the 
contents of the user data area and compare this to the reference model. This won’t 
make the protection mechanism any stronger, because if the copier is capable 
of copying the "watermark” into the mode field, it will also copy the user data part 
of the sector. All the same, it might increase the developer’s self-confidence. 

The simplest example of protection-mechanism implementation is as shown be¬ 
low (naturally, nothing could be simpler than detecting and eliminating the condi¬ 
tional jump that carries out the comparison of the mode field to the reference "water¬ 
mark” constant. Therefore, in order actually to make the protection stronger, it is 
recommended to abandon using explicit checks and use the read sector header, for ex¬ 
ample, for decrypting critical sections of the code). 

Listing 6.65. [crackme. 68E8B0Abh] Searching for watermarks implanted by 
Stomp Record NOW! 

// VITAL CONSTANTS 
#define _WATERMARK OxEl // watermark code 

#define _A2 3 // offset of point A2h in TOC 
#define _MODE 15 // offset of the MODE field 

// in the sector header 
8 // offset of PMin in TOC #define M 
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#define _S 9 // Offset of PSec in TOC 
#define _F 10 // Offset of PFrame in TOC 

#define argCDargv[l] 

main(int argc, char** argv) 

{ 
int a, b, x_sec, LBA_lead_out = 0; 
unsigned charbuf[RAW_SECTOR_SIZE*2] ; 

// TITLE 

fprintf(stderr,"crackme.68E8B0ABh Record NOW! watermark\n”); 

// Help on command-line options 
if (argc != 2) { 

printf (’’USAGE: crackme . 68E8B0ABh. exe CD\n”) ; return -1;} 

// Reading TOC in raw mode 
a = cd_raw_toc_read(argCD, buf, RAW_SECTOR_SIZE, W_FULL_TOC); 

if (a != SCSI_OK) { // Was the operation successful? 

fprintf(stderr, ”-ERR: read TOC\x7\n”); return -1; } 

// Searching for point A2h storing the starting address of the Lead-out 
for (a = 4; a < buf[0]*0xl00L+buf[1]; a+=ll) 

{ 
// Is this point A2? 

if (buf[a + _A2] == 0xA2) 

{ 
// Point A2 found 
// Getting the Lead-out address of the first session 

// and exiting 
LBA_lead_out=((buf[a+_M]*60+buf[a+_S])*75+buf[a+_F])-150; break; 

} 
} 

// Was the search of Lead-out address successful? 

if (LBA_lead_out == 0) { 
fprintf(stderr, ”-ERR: find A2h point\x7\n”); return -1;} 

// Computing X-sector address, where the watermark is stored 

x_sec = LBA_lead_out - 2; 

// Reading the sector containing the watermark in raw mode 
a = cd_raw_sector_read(argCD, buf, RAW_SECTOR_SIZE*2, x_sec, 1, 0xF8); 

if (a != SCSI_OK) { // Was the read operation successful? 

fprintf(stderr, ”-ERR: read X-sector\x7\n”); return -1; } 

// Checking for the watermark presence 
if (buf[_MODE] != _WATERMARK) 

{ 
// This is not an original disc. 
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fprintf(stderr, "hello, hacker!\x7\n”); return 0; 

} 

// This is the original disc, 

printf("hello, legal user!\n"); 

Testing protected CD copiers shows that watermarks are not copied by Clone CD, 
which refuses to process such "incorrect" (from its point of view) sectors and silently cor¬ 
rects them to appear more decent. To do so, it corrects the value of the mode field and 

destroys all identification information. As a result, the copied sector appears as follows: 

Listing 6.66. In the copy of the original disc obtained using Clone CD, watermarks 
disappear, and the MODE field is "corrected" in such a way that the program being 
protected can easily distinguish original disc from its unauthorized copy 

0049C980 00 FF FF FF FF FF FF FF 1 FF FF FF 00 00 29 31 0. .*$.©.. 

0049C990 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00. 

0049C9A0 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00. 

0049C9B0 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00. 

0049C9C0 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00. 

0049C9D0 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00. 

0049C9E0 00 00 00 00 00 00 00 00 1 00 00 00 00 00 00 00 00. 

In some other cases, the copied X-sector is unreadable, and the read cd command 
persistently returns uninformative error messages such as medium error. Why this 
happens is not absolutely clear. Perhaps, Clone CD attempts to emulate the bad sector, 
erroneously assuming that the X-sector is defective. This might also due to an incor¬ 
rect call to the recorder (if Track mode > 2, then, theoretically, the sector being re¬ 
corded in raw mode is not scrambled, and unfavorable regular sequences appear on 
the disc, so the drive encounters difficulties in reading them due to design limitations). 

Nevertheless, for some reason, Clone CD simply destroys all watermarks, and 
a copy of the protected disc becomes unusable. Naturally, in future versions of 
Clone CD, the situation may change (support for X-sectors doesn’t require radical 
code redesigning, and may be implemented any time). In this case, it will become too 
easy to overcome protection based on watermarks. Furthermore, Alcohol 120% and 
(presumably) CDRWin successfully copy X-sectors. Therefore, watermarks in their 
canonic form do not provide efficient protection. To strengthen this protection, it is 
recommended to combine watermarks with other types of protection (an incorrect 
starting address for the first track, track 0 present on the disc, a fictitious track in the 
Post-gap of the key track, etc.). Such combined protection mechanisms are strong 
enough and there are, at present, no tools for copying them. 
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The concept ofX-sector: The phenomenon of X-sectors was discovered accidentally. 

In the course of the development of protection mechanisms based on non-standard 

disc formats, the author tried to invent "irregularities" that would be correctly proc¬ 

essed by all drive models, but which would be impossible to copy with any of the ex¬ 

isting protected CD copiers. Experiments were going on with different levels of suc¬ 

cess, and many of the protection mechanisms that I invented were, sadly, forced to 

drop out of the race because they could not withstand the horrible cruelty of my ex¬ 

periments. Some of them found too many faults with respect to equipment. On some 

drives, protected discs were fully or partially unreadable. Other protection mecha¬ 

nisms were too weak and could be copied easily by common copiers such as Alcohol 

120% and Clone CD... 

Often, one or two faulty sectors would appear of the disc being protected, which I 

initially attributed to physical defects in the media. However, I had to abandon this 

explanation, because faulty sectors appeared in a strictly predefined position, which, 

after closer investigation, proved to be the next-to-last sector of the Post-gap area of 

any track. It was exactly that sector where the header was invalid! 

Copying X-sectors: In theory, there is nothing especially difficult in copying 

X-sectors. It is enough to choose contemporary CD reading and recording software, 

designed in accordance with Orange Book requirements and aware of the existence of 
the Run-in/Run-out blocks (i.e., resetting the sector type by the two least significant 

bits, instead of the entire mode field). Besides this, the copier must carefully and accu¬ 
rately copy the contents of Pre-gap and Post-gap areas from the original to the copy. 

It must ignore the good-natured growling of the standard related to the fact that there 
are no user data there anyway. 

As already mentioned, Clone CD doesn’t meet this requirement. The dump of the 

protected disc that it produces is quite correct. However, it is unable to burn this 

dump onto the copy. Alcohol 120% carries out a correct dump and burns a usable 

duplicate. Naturally, in this case, I mean only the copying of the watermarks in their 

pure form. Even the simplest complication of the protection mechanism drives both 

copiers crazy and causes both of them freeze. 

Because Clone CD is more competent than Alcohol 120% in creating dumps, it is 

recommended to use Clone CD for creating dumps, and burn discs using 

CDRWin/Alcohol 120%. If this doesn’t help, the hacker will have to develop a custom 

copier and crack the protection mechanism itself. 

Experiments with X-sector. An interesting side effect is the unreadability of the 
next-to-last sector, which earlier belonged to the Post-gap of the genuine track (its 
absolute address is &Lead-Out - 2), which is known as X-sector. An attempt to read 
this sector using the read cd command results in returning non-standard error mes¬ 
sages, which are typical for each specific drive model. Provided below is sense info 

for the ASUS, NEC and TEAC drives. The sense-info returned by the ASUS drive 
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is the most interesting. The drive reports a read error, but cannot provide an under¬ 
standable explanation of its cause. The first byte of sense-info equal to zero proudly 
affirms that there are no errors here! 

Listing 6.67. ASUS drive SENSE-INFO 

-ERR:00 00 00 00 00 00 00 00 00 00 00 00 00 00 

The SENSE-INFO returned by the NEC drive is more informative, because 

SENSE KEY equal to three specifies a "MEDIUM ERROR". The values of other fields are 

non-standard (this is indicated by the first byte, which is equal to F0h). Alas, specifications 

that I have at my disposal do not allow me to decode the meaning of these values. 

Listing 6.68. NEC drive SENSE-INFO 

-ERR:F0 00 03 00 00 00 12 0A 00 00 00 00 02 00 

The SENSE-INFO returned by the TEAC drive also specifies that there was 

a "MEDIUM ERROR", but doesn't provide any other details. 

Listing 6.69. TEAC drive SENSE-INFO 

-ERR:F0 00 03 00 00 00 00 0A 00 00 00 00 11 00 

On the other hand, positioning the head to X-sector using the seek (2Bh) com¬ 
mand with further reading of the contents of the Q subcode channel using the 
read subchannel (42h) command was successful on all drives available to me. 

Although all copiers, of which I am aware (including programs such as Clone CD 

and Alcohol 120%), always read subchannel information in the common data flow (i.e., 

they obtain this information using the read cd), they are unable to read the subchannel 

information of the unreadable X-sector! Thus, by placing a key mark in the Q subcode 

channel of the X-sector, we will be able to distinguish the original disc from a copy. 

The procedure for preparing the image of the protected disc is as follows. Start any 

HEX editor (for example, HIEW), open the IMAGE.SUB file containing subchannel in¬ 

formation, and find there the absolute address of the X-sector (in our case, it is 

00:29:31). Make sure that it is actually an absolute address, and not the checksum field 

(all absolute address fields are located in the IMAGE.SUB file at the offset OxxxxxxOCh). 

Change one of the fields of the Q subcode channel of this sector, and then correct its 

checksum accordingly. The easiest way is to swap the contents of Q subcode channels of 

the neighboring sectors. For example, let’s swap sectors 00:29:31 and 00:29:32. 
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Listing 6.70. The contents of the original IMAGE.SUB file (the location where 
the mark will be implanted is in bold) 

0003030C: 41 01 01 00 27 31 00 00 | 29 31 8F AA 00 00 00 00 AO©. ' 1. .) IIIk 

0003036C: 41 01 01 00 27 32 00 00 | 29 32 51 IB 00 00 00 00 A©©.'2..)2Q— 

Listing 6.71. The contents of the "marked" IMAGE.SUB (the mark is in bold) 

0003030C: 41 01 01 00 27 32 00 00 | 29 32 51 IB 00 00 00 00 AO©.'2..)2Q- 

0003036C: 41 01 01 00 27 31 00 00 | 29 31 8F AA 00 00 00 00 AO©.'l..)l_e 

Now burn the modified image and make sure that the subchannel mark is actually 
present. 

Listing 6.72. The key mark in the Q subcode channel of X-sector (left) and the 
unprotected disc (right) 

>see k_and_Q.exe 1.1 2056 >see k_and_Q.exe 1.1 2056 

seek CD-RCM & read Q-subcode by KK seek CD-RCM & read Q-subcode by KK 

00 15 00 0C 01 14 01 01 00 00 08 09 00 00 08 09 00 15 00 0C 01 14 01 01 00 00 08 09 00 00 08 08 

Look, the subchannel information of sector 2056 (808h in hex) states that the LBA 
address of this sector is equal to 809h (2057 in decimal notation), i.e., that subchannel 
information is actually modified! For comparison, take any unprotected disc, and 
make sure that its subcode channel information is correct. 

As was already mentioned before, Clone CD does not use the read subchannel 

command, but instead, receives subchannel information in the main data flow. Having 
encountered an unreadable X-sector, Clone CD, on its own initiative, restores its sub¬ 
channel information in the form that it (according to its opinion) must have. In other 
words, when copying the protected disc using Clone CD, our key mark will be lost, and 
the Q subcode channel of the X-sector will contain the ’’correct” data. See for yourself! 

Listing 6.73. Subchannel information of the X-sector of the original disc (left) 
and its copy, obtained using Clone CD (right) 

>see k_and_Q.exe 1.1 2056 >see k_and_Q.exe 1.1 2056 

seek CD-RCM & read Q-subcode by KK seek CD-ROM & read Q-subcode by KK 

00 15 00 0C 01 14 01 01 00 00 08 09 00 00 08 09 00 15 00 0C 01 14 01 01 00 00 08 09 00 00 08 08 

To obtain more detailed information, start Clone CD, make sure that the protected 
disc is still in the drive, and let’s read a CD into the image file. Subchannel information 
obtained by Clone CD significantly varies from drive to drive. It is, however, in all cases 
incorrect (compare it to subchannel information provided in Listing 6.71). 
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An ASUS drive that does not support the mode for returning subchannel data in 
the common data flow has made Clone CD recover this data on its own, using infor¬ 
mation from the sector headers for this purpose. Consequently, it will be as if there 
was never any key mark. 

Listing 6.74. Contents of X-sector returned by ASUS 

000302AC: 41 01 01 00 27 31 00 00 | 29 31 8F AA 00 00 00 00.. .A©©. ' 1. . ) IIIk. . . 

0003030C: 41 01 01 00 27 32 00 00 | 29 32 51 IB 00 00 00 00 . . . A©©. ' 2 . . ) 2Q«-. . . 

The NEC drive has actually gone crazy with such a disc and, instead of sub¬ 
channel data, has returned senseless garbage 

Listing 6.75. Contents of X-sector returned by NEC 

000302AC: 01 01 01 00 00 00 00 00 | 02 00 5A 28 00 00 00 00...©©©.®. Z (_ 

0003030C: 01 01 01 00 00 00 00 00 | 02 00 5A 28 00 00 00 00...©©©.®. Z (_ 

TEAC has correctly returned the subchannel information of the sector that directly fol¬ 
lows the X-sector, but the subchannel information of the X-sector itself was still incorrect! 

Listing 6.76. Contents of X-sector returned by TEAC 

0003030C: 41 01 01 00 27 31 00 00 | 29 31 8F AA 00 00 00 00. . .A©©. ' 1. . ) IIIk- 

0003030C: 41 01 01 00 27 31 00 00 | 29 31 8F AA 00 00 00 00. . .A©©. ' 1. . ) IIIk_ 

Thus, the protection mechanism based on the fictitious track in the Post-gap of the 

genuine track with the mark in Q subcode channel of the next to last sector in Post-gap 
(codename "Fox”) cannot be copied by any protected CD copier known to me. 
At the same time, it doesn’t conflict with any other equipment known to me (and it 
shouldn’t conflict with anything). Because of this, it is possible to call the ”fox” a suffi¬ 
ciently strong and high-quality protection mechanism. 

Nevertheless, do not overestimate its strength. It can be cracked easily! Let’s use 
a pair of seek and read subchannel commands, read the subchannel information of 

the entire disc, and compare it to the contents of the IMAGE.SUB file created by 
Clone CD or any other similar copier. It is, actually, not necessary to read all of the 
subchannel information, as it is enough to check only how correct the faulty sectors 

(i.e., the ones that Clone CD could not read) are... Having detected a key mark here, 
simply correct the appropriate fields in the IMAGE.SUB file and burn the modified 
image to a CD-R/CD-RW disc. That’s all. Now, from the protection point of view, 
the copy and original will be identical. 
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Low-end CD players are considerably less intellectual than PC CD-ROM drives. Most 

of them do not support multisession discs and tolerate incorrect TOCs, because they 

ignore most part of the TOC fields. Thus, by introducing minor errors into the TOC, 

it is possible to make the disc look OK for CD players, but, at the same time, unreadable 

for PC CD-ROM drives. 

This idea has numerous applications. For example, instead of high-quality music, 

the vendor might try to palm off a data session created specially for PC CD-ROM and 

containing heavily compressed MP3 files. Another trick that developers of this kind 

of protection can play is correcting the pointer to the Lead-out area so as to force 

the PC CD-ROM to interrupt playback several seconds after it starts. A variant 

of this is to alter the starting address of the first track so that its LBA address takes 

a negative value. In all of the cases listed above, normal playback of the disc on 

a PC CD-ROM drive is impossible. However, an invalid TOC on a protected disc can 

be easily corrected (I’ll show you how a little bit later). 

Protection mechanisms based on the introduction of irrecoverable Cl/C2-level er¬ 

rors are considerably harder to overcome in this respect. To crack this type of protec¬ 

tion, you’ll need a drive capable not only of detecting such errors, but also able to 

specify their location. 
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Audio Overlapped by Data 
Let’s consider a multisession CD containing two sessions — an audio session and a data 
session. When browsing such disc using built-in Windows tools, we’ll see only the data 

session. On the other hand, low-end audio players will play back the audio session, with¬ 
out even picking up that the data session exists (for compatibility with CD players, the 
session containing audio tracks must come first). Theoretically, it is possible to play back 
audio tracks by manually starting the CD-player application. However, in practice, at¬ 
tempts to do this usually fail, because the protection mechanism uses additional levels of 

defence (for instance, a ’’castrated” Lead-in, the introduction of irrecoverable CIRC er¬ 
rors, etc.), which prevent such an easy method of’’cracking." 

Visually, these discs can be recognized by their characteristic Lead-out area located 
near the outside disc edge (Fig. 7.1). This is the barrier that separates the audio session 
from the data session. Naturally, the presence of an "extra" Lead-out area in itself is 

not an evidence of the presence of protection. This can also be found on so-called 
CD-Enhanced discs, i.e., mixed-type discs (audio plus data), which are compatible 
with contemporary drives and operating systems. However, its presence is, all the 
same, a disturbing symptom. Unless it is necessary for some reason, it is better not to 
purchase this type of disc (don’t worry if you have, however, as that protection can be 
easily bypassed). The glittering ring of a Lead-out area near the external edge of a disc, 
easily noticeable in reflected light, isn’t yet evidence of the presence of protection 
against playback. However, the probability that it is present is pretty high. 

Fig. 7.1. Disc displayed in this photo is protected by Cactus Shield 2.00, which currently 
is the most popular protection against the digital copying of audio discs 



Chapter 7: Protection Mechanisms for Preventing Playback in PC CD-ROM 347 

The data session can include practically anything (it can even be, sometimes, 

absolutely empty). As a rule, however, it contains heavily compressed audio in 

the MP3 format. At the same time, this MP3 audio is not recorded as individual files 

that can be copied from the disc and uploaded onto the Internet. Instead, this audio 

information is usually ’’rolled up” into an executable shell that can be started only from 

the original CD! Naturally, this executable file can only run under Windows, so the 

only thing that remains to UNIX/Mac users is either to lick their lips or... crack this 

protection! By the way, the procedure of recovering an incorrectly written CD by 

a user on their own and at their own expense must not be considered cracking. 

If no provision for additional levels of protection has been made, the content of 

the audio session can easily be grabbed into MP3/WMA format. Most end-user pro¬ 

grams for burning CD-R/RWs allow you to view the contents of all disc sessions, 

including the first one. You can use Roxio Easy CD Creator, Stomp Record Now!, 

or any similar program. To do this using Easy CD Creator, select the CD Information 

command from the CD menu, and choose one or more audio tracks from the first 

session. Then, click Convert Audio and enjoy high-quality music grabbed into your 

favorite format (the Easy CD Creator version supplied with the PHILIPS recorder 

provides only two variants, from which the user can choose: WMA and WAV, and 

doesn’t support MP3). 

Another variation is to create a corrected copy of the protected disc by removing 

a data session. The Clone CD program can do this automatically. To achieve 

this, find the Audio read parameters tab in the Profile parameters window, set the 

Read first session only checkbox, and click OK. Disc copying will proceed in 

a normal mode. As a result, you’ll get a normal audio CD with all of the garbage 

thrown out. 

Alcohol 120% doesn’t support this capability. It does, however, allow you to 

achieve the same result manually. This can be done as follows: First, create the disc im¬ 

age recorded in the Clone CD format (Alcohol 120% allows you to do this). Then, edit 

the CCD file by removing from it any references to the data session(s). Second, it is 

necessary to decrease the value of the Sessions field from 2 to 1. Then, remove from 

the file all entries, for which the Session value is more than 1. Next, decrease the value 

of the TocEntries field by the number of removed entries. Now, all that remains is to 

delete the one or more data tracks that go last. Pass-through numbering of tracks 

slightly complicates this task, which, at first glance, appears to be an easy one. The dif¬ 

ficulty is that we cannot easily discover, which track belongs to which session. There¬ 

fore, we have to either calculate the number of tracks manually (this corresponds to 

the number of Point fields having a value greater than 0, but smaller than 0x64), or 

remove all tracks, for which the Mode value is not zero. An example of practical work 

with the CCD file is shown in Listing 7.1. 



348 Part III: Protection against Unauthorized Copying and Data Recovery 

Listing 7.1. Correcting the CCD to crack a protected disc 

[CloneCD] 

Version=3 

[Disc] 

TocEntries=24 

Sessions=2 

DataTracksScrambled=0 

CDTextLength=0 

[Session 1] 

PreGapMode=0 

PreGapSubC=0 

[Session 2] 

PreGapMode=2 

PreGapSubC=0 

[Entry 0] 

Session=l 

Point=0xa0 

ADR=0x01 

Control=0x00 

TrackNo=0 

AMin=97 

ASec=26 

AFrame=66 

ALBA=-11634 

Zero=0 

PMin=l 

PSec=32 

PFrame=0 

PLBA=6750 

[CloneCD] 

Version=3 

[Disc] 

TocEntries=20 

Sessions=l 

DataTracksScrambled=0 

CDTextLength=0 

CDTextLength=0 

PreGapMode=0 

PreGapSubC=0 

ProGapModo-2 

ProGapSubC-0 

[Entry 0] 

Session=l 

Point=0xa0 

ADR=0x01 

Control=0x00 

TrackNo=0 

AMin=97 

ASec=26 

AFrame=66 

ALBA=-11634 

Zero=0 

PMin=l 

PSec=32 

PFrame=0 

PLBA=6750 

[Entry 20] 

Session=2 

Point=0xa0 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=72 

ASec=22 

AFrame=38 

ALBA=325538 

Zero=0 

PMin=l6 

PSec=32 

[Entry 20] 

Session-2 

Point-OxaO 

ADR—0x01 

Control~0x04 

TrackNo-0 

AMin-72 

ASec-22 

AFrame-38 

ALBA-325538 

Zero-0 

PMin~16 

PSec-32 
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PFrame=0 

PLBA=74250 

[Entry 23] 

Session=2 

Point=0xl0 

ADR=0x01 

Control=0x04 

TrackNo=0 

AMin=72 

ASec=23 

AFrame=17 

ALBA=3255 92 

Zero=0 

PMin=73 

PSec=54 

PFrame=38 

PLBA=332438 

[TRACK 1] 

MODE=0 

FLAGS= DCP 

INDEX 1=0 

[TRACK 2] 

MODE=0 

FLAGS= DCP 

INDEX 1=19173 

[TRACK 1] 

MODE=0 

FLAGS= DCP 

INDEX 1=0 

[TRACK 2] 

MODE=0 

FLAGS= DCP 

INDEX 1=19173 

[TRACK 16] [TRACK 16] 

MODE=2 MODE=2 

INDEX 1=0 INDEX 1=0 

Some discs contain a nasty program that starts automatically when the disc is 
loaded into the drive and secretly loads itself into the RAM. Its main goal is to protect 
audio tracks against digital grabbing. The specific approaches of this kind of ’’guard” 
may differ. For example, it is possible to scan the list of top-level windows periodically 

(see descriptions of FindWindows or EnumWindows function in Platform SDK) to search 
for the headers of the most popular grabbers. Really good programs for working with 
digital audio are few. Therefore, being able to recognize them all is not unrealistic. 

If a window of one of these programs is found, the protection mechanism can do 
whatever it likes to this window. For instance, in order to forcibly close the applica¬ 

tion, it is enough to send it the wm destroy message. 
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Castrated Lead-Out 
Another popular method of preventing the playback of Audio CDs in PC CD-ROM 
drives is invalidating the TOC contents in such a way as to make the pointer to the 
Lead-out area point to locations closer to the disc’s beginning than the actual Lead- 

out. The overwhelming majority of low-end CD players ignore the value of this field, 
since they don’t need it. PC CD-ROM drives, on the other hand, behave less predicta¬ 
bly when encountering an invalid Lead-out. Some of them obediently stop the play¬ 

back after the time specified by the TOC elapses. Some drives simply freeze, vainly 
trying to find the fictitious Lead-out in a location where there isn’t anything of the sort 
(this may even happen before the start of playback, that is, immediately after loading 
the disc into the drive). Although some drives are intelligent enough to ’’guess” that the 

TOC has been purposefully disfigured (or, perhaps, they simply ignore it) and suc¬ 
cessfully bypass this protection, but this is something that you can’t count on. 

To create a protected disc, you’ll need any normal audio CD (which we are going 
to protect) and any protected CD copier (such as Alcohol 120% or Clone CD). 
The CD recorder doesn’t necessarily need to support RAW DAO mode. 

Having created the image of the disc that you are going to protect, open the 

CCD-file created by the copier and find the following text string: point=0xa2. This is 
the entry that points to the Lead-out area, the address for which is stored in the PMin, 

PSec, and PFrame fields, containing the values in minutes, seconds, and frames, respec¬ 
tively. Reduce the absolute address to a reasonable value (28 seconds, for instance), 

save the changes, and burn the edited image onto a CD-R/CD-RW disc. Wait some 
time for the burnt disc to cool down (just kidding!), remove it from the drive and in¬ 

sert it into any low-end CD player. The protected disc will play normally in almost all 
cases; although, some chance of running into problems remains. Now, insert the test 

specimen into a PC CD-ROM. The drive will obediently stop the playback at the 

28th second. 
In practice, this type of protection can easily be bypassed. Create a disc image us¬ 

ing Clone CD, and edit the TOC by restoring the correct Lead-out position. To deter¬ 
mine the correct value for the Lead-out pointer, manually view the content of the 

Q subcode channel. Find the track with the tno field containing the value OxAA. Note 
that Clone CD can remove such protection on its own. 

Negative Starting Address of the First Audio Track 
Here is another dirty trick: To protect audio CD against copying, edit the TOC by 
setting the address of the first audio track so that it points to the area preceding 
the Lead-in. In other words, assign it a negative offset (Fig. 7.2). 
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N: [1,1] TDK CDRW16104CK 5.32 T 0 Refresh 

B & CD E mi i-i- [+,mmm 
B ^ Session 2 Name _11_ | Size | Size [Bytes) 

Track 13 T rack 1 C -i J 47,85 MB 50.172.864 

mi AUDIO 'V; Track 2 21331 43,96 MB 46.094.496 

1*1 mi AUDIO Track 3 40929 31,78 MB 33.327.840 

■'*) T rack 4 55099 47,72 MB 50.038.800 

■*pj T rack 5 76374 43,39 MB 45.488.440 

■V) Tracks 95719 50,62 MB 53.077.584 

% Track 7 118286 40,62 MB 42.594.720 

"Vj T rack 8 136396 36,79 MB 38.579.856 

■V-Track 9 152799 50,78 MB 53.242.224 

% Track 10 175436 35,27 MB 36.985.200 

*V, Track 11 191161 49,84 MB 52.256.736 

Vj Track 12 213379 42,25 MB 44.304.824 

Fig. 7.2. The negative starting address of the first audio track 
prevents disc playback on PC CD-ROM 

This protection is cracked in a way similar to those considered before. Therefore, 
we won’t concentrate here on a detailed discussion. 



Chapter 8: Protection against 
File-by-File Disc Copying 

High-quality and properly designed protection mechanisms usually contain two inde¬ 
pendent levels of protection, operating at the sector and file levels, respectively. Sector- 
level protection mechanisms are oriented towards protection against sector-level copi¬ 
ers, which copy the entire disc. These copiers create an exact copy of the disc. File-level 
protection mechanisms prevent file-by-file copying of the entire disc, as well as the 
extraction of individual files. 

It may seem that when high-quality sector-level protection is present, file-level 
protection is absolutely useless (especially since all file-level protection mechanisms 
can easily be bypassed even by end-user copiers such as Roxio CD Copier. This isn’t 
true, however! Impossibility to create an exact disc copy doesn’t necessarily mean that 
it is impossible to grab at least part of its contents. Of course, while it’s clear that a part 
still isn’t the whole, it is still better than nothing at all. Here is an example. Protection 
mechanisms for most multimedia encyclopedias (for example, such Russian multime¬ 
dia products as ’’Nautilus Pompilius — Diving” and "Agatha Christie — Virtual 
Concert") operate only at the sector level, but do not prevent you from file-by-file 
copying of a CD’s contents to the hard disk or to another CD. Naturally, the resulting 
"copy" is unusable and, when starting the multimedia shell, the protection mechanism 
refuses to work with the illegal copy and terminates its operation abnormally. Never¬ 
theless, it is still possible to operate with both discs without the shell, because all 
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albums, photos, or video clips are not encrypted and are stored in the WAV/BMP/AVI 
formats, respectively. Even a beginner can easily extract whatever files from the disc 

and do with them whatever he or she pleases! 
Hence, the conclusion is straightforward: Do not confuse CD protection and that 

of its contents. To protect a CD’s contents, a large variety of methods are available... 

Invalid File Sizes 
By the time of the arrival of monochrome terminals and 133” diskettes1, there was al¬ 
ready an ugly, but very easy protection technique to prevent media from being copied 
at the file level. By means of changing file structures, protection developers could 
"ruin" a diskette to that point that working with it was only possible provided that the 
introduced changes were taken into account. The protection program, being aware of 
the file-system errors, could operate with it without encountering any problems. Stan¬ 
dard OS built-in utilities, on the other hand, failed to do so. Note that, at that time, 
there were not yet widely available "hacking" copiers... 

For instance, the protection often consisted of several files referring to common 
clusters. In this case, writing data into the same file resulted in their immediate ap¬ 

pearance in another, which the protection mechanism could use to achieve its pur¬ 
poses. Naturally, after copying the files to another disk, the common clusters were 

written to different locations and the cunning mechanism of implicit data exchange 

ceased to operate. The protected program also ceased to operate. This, of course, only 

happened provided that the user managed to copy the disc contents at all... Copying 
files with overlapping clusters resulted in their multiple replication in each copied file. 

Because of this, the file size grew to such an extent that the capacity of the entire hard 

disk was insufficient to store it! If the last cluster of the file happened to be "glued" to 

its starting point (i.e., the file got looped), both its size and the time required for its 
copying immediately became infinite... Naturally, "disk doctors" were already avail¬ 

able by that time, but they failed to produce the desired result, since correction of the 
file system rendered the protection system unusable (for example, in the above- 

considered case with the file looping, if the protection relied on the fact that the file 
start follows after its end, this technique became inapplicable after processing the disc 

with the "disc doctor" utility, with all the resulting consequences). 

1 No, this is not a joke or misprint. Such diskettes actually existed before even the earliest 8" disk¬ 
ettes designed by IBM in 1971. They were so large that not every door was wide enough to let the 
programmer carrying such a diskette easily go through it. I cannot exactly recall their capacity, but 
this was something about several tens of Kilobytes. The most interesting fact about it is that they 
already contained a file system, although the concept of files was non-existent by that time... 
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The file systems of CDs, naturally, are very different from those used on diskettes. 
The general principles of introducing errors, however, are very similar. By increasing 
the fictitious lengths of the protected files ten times or more, the developer of 
a protection mechanism can raise their total size up to hundreds of gigabytes. Thus, 

in order to copy a protected disc, you’d need a stack of DVDs or a large hard drive. 
A protection mechanism that ’’remembers” the original lengths of all files can operate 
with them without encountering any problems. However, most file copiers won’t un¬ 

derstand this humor, and, consequently, will go crazy. 
Going outside of the file limits, in principle, shouldn’t cause any problems. CD file 

systems are very easy. CDs do not support file fragmentation, and, consequently, don’t 
require FAT. All files take a continuous sequence of sectors, and only the two most 

important characteristics are related to any file: the number of the first sector of the file 

specified in the LBA (Logical Block Address) format and its length> specified in bytes. 
All other attributes, such as file name and its creation time, are of no importance, be¬ 
cause we are currently speaking only about sectors. 

An increase in the file length results in the "capturing" of a number of sectors adja¬ 

cent to its tail. Provided that the number of the last sector belonging to the file doesn’t 
exceed the number of the last sector of the disc, file copying, in principle, will be car¬ 

ried out normally. By "in principle" we mean that all of the other files that are en¬ 

countered in the copying process will be included into the copy. If the number of the 

last sector of our file goes beyond the limits of the disc, the CD-ROM drive reports an 
error and stops reading. Standard copiers built into the operating system, as well as 

most third-party tools, automatically remove the "tail" of the incompletely copied file 
from the disk. As a result, the user achieves no result at all. Of course, it isn’t too diffi¬ 

cult to write a custom copier. However, how do we know what number of bytes we 
actually need to copy? How can we determine where the useful information is 

and where the over-end garbage begins? This is exactly the problem that we are now 
going to solve! 

However, not everyone has CDs protected using this method. Therefore, we are 

going to create one right now! Let’s take any unprotected disc and protect it on our 

own (the title of this book is, after all, Protecting against Unsanctioned CD Copying9" 

not ”Protection cracking"). The first task we must accomplish is obtaining an image 

of the disc that we are going to protect. The best way of doing this is using Roxio 

Easy CD Creator or any other similar program. Clone CD is not suitable here, since 
it refuses to carry out short sector read (i.e., user data only) and always processes 

entire sectors by forcibly adding the checksum and error-correction codes to the 
end of each sector. As a result, none of our manipulations will produce any effect. 

They will, on the contrary, be corrected automatically on the fly by the drive’s firm¬ 
ware. It is possible, of course, to compute a new checksum and error-correction 

codes after entering the required changes, but why complicate our life unnecessarily? 
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If you do not have Easy CD Creator, take Alcohol 120%, and choose the Standard 

ISO images option. 

OK, now let’s assume that the CD image has been successfully saved in the 
traskiso file, with which we are going to work now. Open this file using HIEW or any 
other HEX editor and find the sector that contains the TOC. A pretty business! How 
can we find it? To do so, we need at least to view the foliet/ISO-9660 file system speci¬ 
fication or exert a bit of mental effort. Since the file size is specified in bytes, not in 
sectors (it just can’t be specified in sectors, file systems that measure files in blocks be¬ 

came obsolete long time ago), then we can find the required field using a trivial con¬ 
text search. Choose the file the length of which we are going to measure, and convert 
it to a hex. For instance, let it be the file named ”01 - Personal Iesus.mp3" having the 
length of 3,591,523 bytes. In hex notation, taking into account the inverse byte order, 
this value will appear as follows: 63 CD 36 00. Press <F7> and enter the sequence that 
we are looking for... 

Listing 8.1. The first occurrence of the desired sequence in the disc image 

0000CBD0: 07 06 14 38 16 OC 02 00 00 01 00 00 01 01 01 30 •*f8-?®...©...©©©0. 

0000CBE0: 00 91 01 00 00 00 00 01 91 63 CD 36 00 00 36 CD . C©...©Cc=6...6=. . . 

0000CBF0: 63 67 06 ID 17 0D 0A 28 OC 00 00 00 01 00 00 01 ?...©...©. . 

0000CC00: 0E 30 31 30 5F 30 30 30 1 31 2E 4D 50 33 3B 31 00 ^|010 0001.MP3|; 1 

Listing 8.2. The second occurrence of the desired sequence in the disc image 

00010370 01 00 00 00 00 01 91 63 1 CD 36 00 00 36 CD 63 _67 ©...©Cc=6...6=cg. . . 

00010380 06 ID 17 0D 0A 28 OC 00 1 00 00 01 00 00 01 32 00 ■(?...©...©2 . . . 

00010390 30 00 31 00 20 00 2D 00 1 20 00 50 00 65 00 72 00 0 1...-...P e r_ 

000103A0 73 00 6F 00 6E 00 61 00 1 6C 00 20 00 4A 00 65 00 ... J...e 

000103B0 73 00 75 00 73 00 2E 00 1 6D 00 70 00 33 00 3B 00 s...u...s.... m...p...3...; 

The desired value is actually present in the disc image. In fact, there are not one, or 

even two, but four such occurrences! No, this isn’t some kind of devilry — in fact, this 

is how it should be. Contemporary CDs contain two file systems: one of them, 

ISO-9660, is written to the disc exclusively for compatibility with obsolete software, 

limiting the maximum length of a file name to 11 characters (eight for the name itself, 

and the remaining three for the filename extension). Contemporary software operates 

with more advanced file systems, including foliet, developed by Microsoft. If you think 

that all we need now is Romeo, strangely enough, there is a file system by that name! 

It was developed by Adaptec, but, unfortunately, didn’t become widespread and 

passed away quite soon, foliet, therefore, will remain alone. 
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Enough of romance, let’s get back to business. Generally, it isn’t necessary to worry 
about synchronization of the two file systems, because Windows ’’sees” only Joliet and 
ignores ISO-9660, while MS-DOS does exactly the opposite. Therefore, if we increase 
the file length in Joliet, but "forget" about doing the same in ISO-9660 (this is the par¬ 
ticular trick that some developers of protection mechanisms play), Windows will never 
even have a shadow of suspicion that some deception is taking place. However, the 
question is different with hackers! The original length of files left without changes in 

ISO-9660 will considerably simplify the task of the cracker. Consequently, it isn’t rec¬ 
ommended to leave them as they are! Besides this, there are several drivers that allow 
you to manually choose, which of the two file systems you wish to mount. Don’t be 
lazy, therefore, and correct both values simultaneously by changing the two most 
significant bytes from 36 00 to ff 66 (you may, of course, prefer another value). 
When doing this, pay special attention to the double word 00 36 CD 63. This also is 
the file length, written, however, in the inverse order, which is unnatural for IBM PC. 

Here, the least significant byte is located at the higher address. The address of the 
starting sector of the file is also written in two variants. Such a scheme of information 
representation has obviously been chosen on the basis of considerations of compati¬ 
bility. Every platform is free to choose the byte order that is natural for it. There is no 
guarantee, however, that Windows will choose the "less significant byte by lower ad¬ 
dress" variant. Everything depends on the file system driver, which, in turn, depending 
on the specific features of its implementation, can work with any of these two fields. 
Therefore, both fields must always be coordinated. 

Now the modified (I mean, invalidated) ISO image can be burnt onto a CD-R/CD-RW 
or mounted to a virtual CD drive (for this purpose, you’ll need Alcohol 120% or any 
similar program). Issue the dir command, and you’ll see the following: 

Listing 8.3. The size of the "Personal Jesus.mp3" file is modified on purpose 

> dir N: \Depeche Mode 

Volume in drive N has label 030706_2038 

Volume serial number is 61A1-A7EE 

Directory of N:\Depeche Mode 

06.07.2003 21:56 <DIR> 

06.07.2003 21:56 <DIR> 

01.01.1601 04:00 1 728 040 291 01 - Personal Jesus.mp3 

30.06.2003 00:11 3 574 805 02 - See You.mp3 

30.06.2003 00:12 3 472 405 03 - Strangerlove.mp3 

30.06.2003 00:12 3 718 165 04 - Enjoy The Silence.mp3 

30.06.2003 00:13 2 956 643 05 - The Meaning Of Love.mp3 

30.06.2003 00:14 3 820 565 06 - Master and Servant.mp3 
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30.06.2003 00:15 3 066 149 

30.06.2003 00:16 3 806 772 

30.06.2003 00:16 3 813 460 

30.06.2003 00:17 3 574 805 

30.06.2003 00:18 3 687 236 

30.06.2003 00:19 4 916 036 

30.06.2003 00:20 4 182 100 

30.06.2003 00:21 4 585 012 

30.06.2003 00:22 3 646 276 

30.06.2003 00:22 3 049 012 

30.06.2003 00:23 3 800 085 

30.06.2003 00:25 7 151 700 

18 files 1 794 861 517 

2 folders 

07 - Never Let Me Down Again.mp3 

08 - Its Called a Heart.mp3 

09 - Little 15.mp3 

10 - Everything Counts.mp3 

11 - People Are People.mp3 

12 - The Thing You Said.mp3 

13 - Agent Orange.mp3 

14 - World in my Eyes.mp3 

15 - Behind The Wheel.mp3 

16 - Black Celebration (live).mp3 

17 - Nothing.mp3 

18 - Bonus (unnamed).mp3 

bytes 

0 bytes free 

Well! The file size has increased to 1,728,040,291 bytes (see the string highlighted 
in bold), which is more than twice the volume of the entire CD. And they have the gall 
to say that one part cannot be larger than the whole! Naturally, any attempt to copy 
this file to the hard disk will fail. Therefore, we must look for a way to bypass this. Let’s 
focus on the fact that files on the CD are placed sequentially, which means that the last 
sector of the current file is directly followed by the starting sector of the next file. Be¬ 
cause we know the starting sectors of all files, determining the position of the termi¬ 
nating sectors, except for the last, shouldn’t present any problem. 

Let’s copy the ISO image of the protected disc into a file and consider its directory 
once again: 

Listing 8.4. A fragment of the file image under consideration 

0000E040 00 01 01 01 54 00 94 01 1 00 00 00 00 01 91 63 CD . ©©©T...04...©Cc=. . 

0000E050 FF 66 66 FF CD 63 00 00 1 00 00 00 00 00 00 00 00 . ff..=c. 

0000E060 01 00 00 01 32 00 30 00 1 31 00 20 00 2D 00 20 00 ©...©2...0...1...-. 

0000E070 50 00 65 00 72 00 73 00 1 6F 00 6E 00 61 00 6C 00 

0000E080 20 00 4A 00 65 00 73 00 1 75 00 73 00 2E 00 6D 00 . . J...e...s...u...s.m 

0000E090 70 00 33 00 3B 00 31 00 1 46 00 6B 08 00 00 00 00 p...3...;...l...F...kn. . . 

0000E0A0 08 6B 15 8C 99 00 00 99 1 8C 15 67 06 ID 17 0B 1C nk§Mm.H]pi§g*~$rf,L 

0000E0B0 OC 00 00 00 01 00 00 01 1 24 00 30 00 32 00 20 00 ?...©...©$...0...2. 

0000E0C0 2D 00 20 00 53 00 65 00 1 65 00 20 00 59 00 6F 00 -...S...e...e...Y...o_ 

0000E0D0 75 00 2E 00 6D 00 70 00 1 33 00 3B 00 31 00 50 00 u.m...p...3...; ...1...P 

The smallest number of the file’s starting sector, after sector 0l9lh, is 086Bh. Thus, 
the ”01 - Personal Jesus.mp3" file cannot contain more than 086Bh - 0191h == 6DAh 

sectors or 1754 * 2048 == 3,592,192 bytes. Naturally, this is a somewhat excessive 
value, and the actual file is 1.5 K shorter. This difference, however, is already of no 
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importance. Most multimedia files will be processed correctly, even with the presence 
of a certain amount of irrelevant garbage at the tail. Having corrected the file image, 

let’s write it to the disc or simply shorten the file to the required length using any 
available program, such as "Pinch of file.” 

What should you do if you are not satisfied with such a low level of reliability from 
this protection? There is, in fact, something that can be done. For example, it is possi¬ 
ble to reduce the numbers of starting sectors of several files, which allows you to kill 

two birds with one stone. First, the file with an incorrectly specified sector definitely 
won’t be processed correctly by an associated application (which isn’t surprising, since 
after this kind of manipulation, the actual starting point of the file will be somewhere 

in its middle). Second, the algorithm used to determine original file lengths from 
the difference of the neighboring starting sector addresses is sure to produce an incor¬ 

rect result, according to which the restored file will be cut off. 
A protection mechanism that knows the actual offset of the file’s starting sector in 

relation to its real starting point must either shift the file pointer by means of calling 
the SetFilePointer function or "swallow” the garbage data using the ReadFile func¬ 

tion. Both methods are equally effective, and each of them has its strong and weak 
points. SetFilePointer operates considerably faster. However, it is easily recognizable 
(especially to hackers). When encountering the ReadFile call, on the contrary, 
it is necessary to find out what kind of data it actually reads — useful information 

or simply garbage. 
Let’s study how the cracking process appears in practice. Writing a frilly functional 

MP3 player just for the sake of illustration isn’t a rational approach (besides which, it 
would take a lot of space). Therefore, all of the data processing in this demo example 
consists of displaying the original file contents on the screen. Before starting this pro¬ 

gram the first time, the starting sector number of the protected file must be decreased 
by the _nsec_ value, and the size must be increased by at least 2048*_nsec_ bytes. 
There is no limitation on the maximum length (which means that you can use 
all 32 bits of the length field). 

Listing 8.5. [crackme.27AF7A2Dh] A demo example illustrating the processing 
of files with incorrect attributes for starting sector and length 

/*. 

crack me 27AF7A2D 

* A demo example illustrating the processing of files with an intentionally 

* decreased number for the starting sector and an increased length; positioning of the file 

* pointer is carried out by a call to the fseek function, therefore this crackme 
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* is very easy to crack. 

* 

* Build 0x001 @ 02.07.2003 

-*/ 

#include <stdio.h> 

// Program settings 

// =================== 

// Name of the file to be opened 

//If protection resides on the CD, then there is no need to specify 

// full pathname. 

#define _FN_ ”M:\\Depeche Mode\\01 - Personal Jesus.mp3” 

// The number of sectors by which the starting point of the file is offset 

#define _NSEC_ 4 

// Original file size 

#define _FSIZ_ 3591523 

// User data size 

#define SECTOR_SIZE 2048 

// Screen width in characters (needed to display a dump) 

#define _SCREEN_LEN_80 

// Size of the block being processed 

#define BLOCK_SIZE 0x666 

// Finding the minimum of two numbers 

#define _MIN(a,b) ((a<b)?a:b) 

// DISPLAYING HEX DUMP 

//- 
ll src - Pointer to the data being output 

ll n - Number of bytes displayed on the screen 

print_hex(unsigned char *src, int n) 

{ 

int a; static p = 1; 

for (a=l; a <= n; a++) 

printf(”%02x%s”, src[a-l], (p++%(_SCREEN_LEN_/3-l)) ? " ”:”\n”); 

} 

main() 
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{ 

int a; 

FILE *f; 

long p = _FSIZ_; 

char buf[BLOCKJSIZE]; 

// TITLE 

fprintf (stderr, ’’crackme 27af7a2d by Kris Kaspersky\n”) ; 

// Trying to open the file 

if ((f = fopen(_FN_, ”rb”)) == 0) 

{ 

fprintf(stderr, ”-ERR: can not open %s\n",_FN_) ; return -1; 

} 

// Skipping _NSEC_ extra sectors in the beginning of the file 

fseek(f, _NSEC_*SECTOR_SIZ E, SEEK_SET); 

// Reading file by blocks, taking care that we don't go 

// beyond the limits of its original size 

while(p) 

{ 

// Attention: Don't use the fgetc function for processing files with an 

// incorrect size, since in most of implementations 

// this function processes files in blocks instead of bytes. 

// Block size isn't known beforehand. This means that 

// the fgetc function carries out transparent input buffering, 

// based on the specified file size as a reference. 

// If this value is incorrect, there is no guarantee 

// that the fgetc function will remain within the disc size limits. 

// The consequences of the function's going beyond these limits 

// are unpredictable (this is particularly probable 

// if the file being processed is the last file on the CD) . 

// Therefore, use fread, or better still, ReadFile, 

// which certainly won't end up running ahead of the hounds. 

// Reading the next block 

fread(buf, 1, a = _MIN(p,BLOCK_SIZE), f); 

print_hex (buf, a) ; p-= a // Displaying it on the screen 

} 

} 
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Having discovered that the main file attributes are incorrect (which means that 
this file is unreadable), the hacker will certainly want to determine the offset of the first 
actual byte and original file size. 

Listing 8.6. Soft-ice log file 

:bpx CreateFileA ; Set the breakpoint to CreateFileA 

:x ; Exit the Ice 

Break due to BEX KERNEL32! CreateFileA (ET=3.37 seconds) 

; The debugger pops up, which means that someone has called the CreateFileA function. 

; But who ? Let's try to determine this by the name of the opened file. 

:d esp->4 ; Viewing the first argument passed to the function 

0010:00407060 4D 3A 5C 44 65 70 65 63-68 65 20 4D 6F 64 65 5C M:\Depeche Mode\ 

0010:0040707c 30 31 20 2D 20 50 65 72-73 6F 6E 61 6C 20 4A 65 01 - Personal Je 

0010:0040708C 73 75 73 2E 6D 70 33 00-4D 3A 5C 44 65 70 65 63 sus.mp3.M:\Depec 

; That's it! It is exactly what we need! 

:p ret ; Exiting the function 

:? eax ; Viewing the value of the file descriptor 

00000030 0000000048 ”0” ; The descriptor is 0x30 (or 48 in decimal notation). 

:bpx SetFilePointer if (esp->4 = 0x30); 

:bpx ReadFile if (esp->4 = 0x30) 

; Setting the breakpoints to the main file functions, SetFilePointer and ReadFile, 

; thus making the debugger show up only when "our” descriptor is passed to these 

; functions (special note for developers of protection mechanisms: ladies and gentlemen, 

; don't let the hackers to deceive you so easily! Open the file several times 

; and work with it using various descriptors, changing them from time to time, 

; as this will seriously complicate the analysis) 

:x ; Exiting the debugger 

Break due to BEX KEKNEL32!SetFilePointer IF ((ESP->4)=0x30) (ET=76.19 microseconds) 

; This was our breakpoint set to the SetFilePointer function, now we need to view 

; the offset value, by which the pointer has been shifted, 

; and the origin - to determine, 

; in relation to which part of the file the count is carried out. 

:? esp->8 ; Viewing the second argument of the function 

00002000 0000008192 " " ; The pointer is moved 0x2000 bytes from.. 
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:? esp->0C ; Viewing the third argument of the function 

00000000 0000000000 ” ” ; ...the starting point of the file (SEEK_SET) 

:p ret ; Exiting the debugger 

; The SetFilePointer function isn't called any more. However, 

; there are multiple calls to the ReadFile function. 

; We won't issue the P RET command for analysis of the protection code 

; (in contrast to some hacking recommendations) . After all, ReadFile 

; is most likely called from some library wrapper, instead of direct calls, 

; and analysis of this wrapper is unlikely to produce any valuable result. 

; Instead of this, let us view the calls stack.. 

: stack ; Viewing the calls stack 

12F8C8 401E1C KERNEL32!ReadFile 

12F8F8 4010E5 crackme!.text+OElC 

12FEC0 77E87903crackme!.text+00E5 

12FFF0 0 KERNEL32!SetUnhandledExceptionFilter+005C 

; Obviously, the address 55E87903h belongs to some OS internals. 

; Therefore, it is of no interest to us, as well as address 40lElCh 

; (the return address from ReadFile), 

; since as was already mentioned before, it is most likely that it belongs to some 

; library wrapper. As relates to the address 4010E5h, it is worth investigating: 

:u 4010E5 

001B:00401072 mov edi, |36CD63| 

001B:004010C8 cmp edi, 00000666 

001B:004010CE mov esi, edi 

001B:004010D0 jl 004010D7 

001B:004010D2 mov esi, 00000666 

001B:004010D7 push ebx 

001B:004010D8 push esi 

001B:004010D9 lea eax, [esp+14] 

001B:004010DD push 01 

001B:004010DF push eax 

001B:004010E0 call 00401141 

001B:004010E5 lea ecx, [esp+lC] 

001B:004010E9 push esi 

001B: 004010EA. push ecx 

001B:004010EB call 00401000 

001B:004010F0 add esp, 18 

EDI := 36CD63 

\ (1) 
+- ESI := _min(0x666, EDI) 

+ 

/ 

Number of elements being read 

Getting the pointer to a buffer 

Size of a single element 

Passing the pointer to buffer 

This function calls ReadFile 

Processing the data that has been read 

Removing unneeded arguments from the stack 
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001B:004010F3 sub edi, esi ; EDI := EDI - _min(0x666, EDI) 

001B:004010F5 jnz 004010C8 ; Looping, until there is anything to process 

001B: 004010F7 pop esi ; ... 

; Studying the environment of the 4010E5 address allows us 

; to restore the file processing algorithm in a matter of seconds. 

; The file is being read in 0x666-byte blocks 

; until there are exactly 0x36CD63 (or 3,591,523 in decimal notation) 

Thus, after the file is opened, its pointer is moved 0x2000 bytes (4 sectors) forward, 
then 3,591,523 data bytes are read, after which its processing stops. Consequently, it is 

possible to restore the protected file as follows... 
Try to play it using any available MP3 player. If everything was done correctly, 

you’ll enjoy the Depeche Mode no longer spoiled by any protection mechanism! 
By the way, this music is especially suitable as background music to make the work of 
improving protection mechanisms more pleasant. In fact, there are a lot of things that 

need improvement! 
"Cunning” processing of protected files assumes the use of at least three descrip¬ 

tors for each file: two are actually used for data processing, while the third descriptor 

dances wildly over the entire file, reading senseless garbage. This garbage is passed to 

a bulky and horribly complicated procedure that carries out sophisticated computa¬ 
tions, which are never used in practice. "Feeding” this procedure by the first _nsec_ 

sectors of the protected file, we’ll create a false impression that file processing begins 
from the start of the file (well, practically from the start, because protection developers 

can easily move the pointer to whatever position he or she likes). 

Descriptors that are actually used must be opened after returning a false one, since 

most crackers trace only the first call to CreateFileA, which opens the specified file, 
ignoring all further calls to that function. Actually, most crackers don’t even guess that 

the same file can be opened more than once. 
For positioning on the first byte of the useful data, it is better to read the garbage 

and imitate its processing instead of calling the SetFilePointer function. In a well- 

designed protection mechanism, it is very difficult to determine where the garbage 

ends and the actual data begins. However, the implementation of such a protection is 
very difficult (and remember that along with implementing the code, you’ll have to 

debug it). Therefore, for simplicity’s sake, it is possible to limit the protection by en¬ 
suring that the starting point of useful data coincides with the first byte of the next 

block being read. 
It is extremely undesirable to store the original file length in the form of a con¬ 

stant, because all constants are immediately revealed in the course of analysis. In fact, 

the required value can quickly be found by using the brute force approach. This is be¬ 
cause in most programs, there aren’t too many constants with values comparable 
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with the lengths of files being processed. Therefore, instead of file length, it is recom¬ 
mended to store the length of its "tail", i.e., the remainder from the division of the 
original length by the size of processed blocks. Naturally, block size and the number of 
blocks also must be stored somewhere, but analysis of the relationship between three 
constants is much more difficult than finding a single constant! 

Taking into account all of the above-mentioned considerations, we can improve 
our protection mechanism significantly. One of the possible variants of its implemen¬ 

tation could appear as follows: 

Listing 8.7. [crackme.CEE99D84h.c] Software implementation of a protection 
mechanism based on an invalid disc TOC 

// Size of the "tail" of the last block 

#define TAIL_SIZE (_FSIZ_ % BLOCK_SIZE) 

// Number of whole blocks 

#define N_BLOCKS (_FSIZ_ / BLOCK_SIZE /2) 

// FALSE DATA PROCESSING 

//- 

// It is best to make this function as bulky and complicated 

// as possible, so that its activities (thrashing, in fact) 

// won't be self-evident, 

thrashing(unsigned char *src, int n) 

{ 

int a, sum = 0;for (a = 0; a< n; a++) sum += src[a]; return sum; 

} 

main() 

{ 

int a = 0; 

long p = _FSIZ_; 

FILE *f_even, *f_uneven, *f_thrashing; 

char buf[BLOCK_SIZE + (_NSEC_*SECTOR_SIZE)]; 

// TITLE 

fprintf(stderr, "crackme 27af7a2d by Kris Kaspersky\n") ; 

// Trying to open the file 

// The best practice is to open f_thrashing first, because 

// the first call to CreateFileA encountered by a cracker 

// must return a "false” descriptor, 

if ( ((f_thrashing = fopen(_FN_, "rb") ) =0) | | 

((f_even = fopen(_FN_, "rb") ) =0) | | 

((f_uneven= fopen(_FN_, "rb") ) =0)) 
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{ f printf(stderr, ”-ERR: cannot open %s\n",_FN_); return -1;} 

// Setting f_even 

tread(but, 1, _NSEC_*SECTOR_SIZE, f_even); 

// Imitating the skipping of NSEC*SECOR_SIZE/2 bytes 

// (hoping that this will deceive the cracker) 

// Actually, all NSEC*SECTOR_SIZE starting bytes of 

// the file go to dev/null 

thrashing(but + _NSEC_*SECTOR_SIZE/2,_NSEC_* SECTOR_SIZE/2); 

// Setting f_uneven 

tread(but, 1, _NSEC_* SECTOR_SIZE+BLOCK_SIZ E, f_uneven); 

// Imitating the skipping of NSEC*SEC0R_SIZE/3 bytes 

thrashing(but + _NSEC_*SECT0R_SIZE/3, 2*_NSEC_*SECTOR_SIZE/3+BLOCK_SIZE); 

// Setting thrashing, thus directing the cracker by false trace 

fseek(f_thrashing,_NSEC_*SECT0R_SIZE/4,SEEK_SET); 

// Reading the file in blocks, making sure that we do not go 

// beyond the limits of its original size 

for (a=0; a < N_BLOCKS; a++) 

{ 
// Reading trash data 

tread (but, 1, BLOCK_SIZE, f_thrashing) ; threshing (but, BLOCK_SIZE) ; 

// Reading the even block with actual data 

tread(but, 1, BLOCK_SIZE, f_even); print_hex(but,BLOCK_SIZE); 

// Skipping uneven block for f_even descriptor 

tread(but, 1, BLOCK_SIZE, f_even); threshing(but,BLOCK_SIZE); 

// Reading uneven block of actual data 

tread(but, 1, BLOCK_SIZE, f_uneven); print_hex(but,BLOCK_SIZE); 

// Skipping the even block for f_uneneven descriptor 

tread(but, 1, BLOCK_SIZE, f_uneven); threshing(but,BLOCK_SIZE); 

} 
// Reading the tail 

tread(but, 1, TAIL_SIZE, f_even); print_hex(buf, TAIL_SIZE); 

Try to crack this protection. Did you succeed? An attempt at tracing calls to 
SetFilePoiner and ReadFile functions doesn’t produce any result, because the manner 

of data read is highly non-linear, and there is no efficient method to distinguish trash 
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from useful data quickly. These protection mechanisms shouldn’t be cracked using 
only a debugger. In this case, you’ll require a disassembler. Not even this, however, will 

guarantee that you’ll succeed quickly. The complexity and intricacies of the data proc¬ 
essing algorithm considerably complicate program analysis. With regard to determin¬ 
ing the actual boundaries of the protected file, even professionals might end up 

spending several hours (or sometimes even days). Because of the space limitations, 

disassembled listings and a description of the cracking process won’t be provided in 
this book. They don’t, in fact, contain anything interesting — just routine operations. 
The only clue in this case is the thrashing function that imitates the data processing. 
As soon as the hacker understands that the results of its operation are not used by the 
program in any way, he or she will have made a considerable advance in cracking 
activities. Breakpoints set to memory read/write operations will allow him or her 

to quickly and elegantly determine if specified memory cells are actually accessed. 
In other words, there are no secrets that cannot be revealed using Soft-Ice and IDA... 

File Encryption 
To prevent file-by-file copying, it would be ideal to use custom non-standard data for¬ 

mats, which wouldn’t be possible to view or play by bypassing the shell program. 
However, the development of a custom file format requires considerable investment, 

which is unjustified, because long before the program can make a worthwhile return 
on this investment, hackers will ’’unbind” it from the disc by cracking the protection at 
the sector level and, thus, be able to engage in disc replication. 

Developers of protection mechanisms, therefore, prefer to base them upon exist¬ 

ing formats (such as MP3), and simply encrypt the files before writing them to the master 

disc, then decrypting the CD contents on the fly when playing back. The drawback of 
this approach is that protection mechanisms based on it are very easy to crack. To do 
this, it is enough to set the breakpoint to the CreateFile function, wait until the re¬ 

quired file is opened, and then trace the eax register value at the instance of exiting 
from the function. This value will be the descriptor of the opened file. After that, 

all that remains is to set the breakpoints to the SetFilePointer/ReadFile functions to 
make the debugger show up only in cases when ”our” descriptor is passed. 
The breakpoint set to the memory area containing the data read from the CD will lead 
the hacker directly to the decryption procedure. Having analyzed its algorithm, 
the hacker will be able to write a custom decrypting procedure! 

If the encryption algorithm is just a trivial xor (which is most often the case), the 

disc contents can be cracked even faster! In practice, all non-standard file formats 
contain a certain volume of more or less predictable information, and, therefore, can 

be decrypted by an attack based on plain text. For example, AVI, MP2/MP3, WMA, and 
ASF files contain long chains of consecutive zeros (and/or characters with the code ff). 
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The encryption key, therefore, is detected by trivially viewing the contents of the pro¬ 

tected file in any HEX editor. 
Consider the following example. Assume that you have a multimedia CD "The 

Best of Depeche Mode," and the contents of one of its files looks as follows: 

Listing 8.8. The hex dump of the header of the file being investigated 

IK:\sex\l\0 3 - Strangerlove.dat DOS 3472405 | 

00000000 9D 9A F0 39 62 61 60 3A 1 65 A4 8B F0 52 Cl 01 98 3tE9ba' : eflJIER-LoiH 

00000010 BA DB 03 5A 54 27 A6 4C 1 43 ED 46 ID 8B 21 ED 9A |||rZT ,acLC3F^JI!3rb 

00000020 D3 C7 7B 58 4B A6 78 5D 1 F6 FA F0 A9 55 63 66 A8 *L||-{xk»cx] y* EMUcfpi 

00000030 7E 6A 5A 79 61 68 E8 7B 1 69 47 F9 7B 60 22 E3 88 ~j Zyahm{iG•{'"yH 

00000040 61 E2 67 98 E0 E2 2D ED 1 13 AD E3 38 C5 A5 71 FB a t glllp t-3!! Hy 8-|-e q V 

00000050 1A 01 CO B6 85 77 5A 49 1 46 4F 93 7B BF 30 A5 9D ^©LflEwZIFOyi-i 0e3 

This dump doesn’t look like MP3 (MP3 files start with the ff fb signature, which 
isn’t always located in the beginning of the file, however). It doesn’t appear as a WAV, 
either (because WAV files start with the riff signature). It doesn’t look like 
a RealAudio file (RealAudio files start with .rmf), but these files are played in some 
way or another! Also, at the same time, it is unlikely that the developers of this multi- 

media CD have designed a custom file format. In all likelihood, this file is encrypted. 
If this is the case, it is possible to decrypt it! 

Let’s scroll the HEX editor window down until we encounter the regular sequence 
shown in Listing 8.9. 

Listing 8.9. A regular sequence detected inside the file being investigated 

347240 

000001E0 C3 5A AF F8 70 4A D8 83 5D 9E 9D 86 9D 9E 9D 86 |-Zn0pj4=r] HD35K3I035K 

000001F0 9D 9E 9D 86 9D 9E 9D 86 9D 9E 9D 86 9D 9E 9D 86 3HD35K3I035K3I035K3I035K 

00000200 9D 9E 9D 86 9D 9E 9D 

00 9D 9E 9D 86 9D 9E 9D 86 3HD35K3I035K3I035K3I035K 

00000210 9D 9E 9D 86 AA C2 62 79 62 B4 CO 6A 9D 9E 9D 86 3HD35KKTbyb-| Lj 3HD35K 

00000220 |9D~ 9E 9D ~86| 9D 9E 9D 86 | 9D 9E 9D 86 9D 9E 9D 86 3HD35K3I035K3I035K3I035K 

00000230 9D 9E 9D 86 9D 9E 9D 

uo 
00 9D 9E 9D 86 9D 9E 9D 86 3HD35K3I035K3I035K3I035K 

00000240 9D 9E 9D 86 9D 9E 9D 

uo 
00 70 B8 46 0B 3B 61 63 30 3HD35K3I035Kp=| Fcf; acO 

It is highly probable that in this position, the original file contained a chain of 
bytes having identical values, for instance, it might be a sequence of zeros or ff bytes, 

which were xoR’ed using a four-byte key. 
Since xor is a symmetric operation, ((A xor B) xor a) == b, this means that re¬ 

peated encryption of the file with its original contents will produce the key. Supposing 
that there were zeros in this position, the encryption key will be "...9E 9D 86 9D...’’. 
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The dots on each side of the key mean that, for the moment, we are not ready to sepa¬ 

rate the start and end of the regular sequence. Actually, it may be both 9E 9D 86 9D, 

and 9D 86 9E 9D, or even 86 9D 9E 9D or 9D 9E 9D 86. However, instead of blindly 
trying all four variants, let’s note that the length of the regular sequence is four. Con¬ 

sequently, the first byte of each "period” must be located at an offset that is a multiple 
of four. Hence, the required sequence must be 9D 9E 9D 86, and because they are 
located at invalid addresses, all other variants are incorrect. Since the starting addresses 
of HEX strings displayed by the editor are aligned by the 0x10 bytes boundary 
(and 0x10 is a multiple of 4), then the first byte of the key must match the starting ad¬ 
dress of any string. 

Now, let us assume that in this position of the original file there was a chain of zeros. 

Then the encryption key should be as follows: 9D 9E 9D 86 (because (A xor 0) == A). 

Start HIEW, press <Enter> to switch to the hex mode, and press <F3> to activate the 

edit mode. Then press <F8> to open the Enter XOR mask dialog, and enter the hex se¬ 
quence. After that, you can place something heavy on the <F8> key and go somewhere 
to relax for a while, because HIEW will take a long time to decrypt the file. 
As a result, there’s nothing else to do other than to take your favorite compiler and write 

the decryption program yourself. The listing provided below isn’t a masterpiece of pro¬ 
gramming art, but it will do as a working variant developed to quckly close the problem. 

Listing 8.10. [/etc/DeXOR.c] A demo example of a simple decryptor 

/*- 

XORs THE FILE CONTENTS BY ARBITRARY MASK 

* Build 0x001 @ 09.07.2003 

#include <stdio.h> 

#define MAX_LEN 666 // Max. mask length 

#define MAX_BUF_SIZE (100*1024) // Read buffer size 

#define FDECODE ”decrypt.dat” // Name of decrypted file 

main(int argc, char **argv) 

{ 

long a, b; 

long key_len; 

FILE *fin, *fout; 

long buf_size, real_size ; 

unsigned char key [MAX_LEN] ; 

*/ 
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unsigned char buf[MflX_BUF_SIZE]; 

if (argc<3) // HELP on the command-line options 

{ 

fprintf (stderr, ’’USAGE: DeXOR.exe file_name AA BB CC DD EE...\n”); 

return 0; 

} 

ll Finding the key length and setting the buffer size 

ll equal to its multiple 

key_len = argc - 2; buf_size = MAX_BUF_SIZE - (MAX_BUF_SIZE % key_len) ; 

// Retrieving keys from the command line into the key array 

for(a =0; a < key_len; a++) 

{ 

// Converting from HEX-ASCII to long 

b = strtol(argv[a+2], &” ”, 16); 

if (b > OxFF) 11 Check for maximum allowed value 

{fprintf(stderr, ”-ERR: val %x not a byte\x7\n”, b); return -1;} 

key[a] = b; // Storing the value of the next byte of the key 

} 

printf(’’build a key:”); // Displaying the key (for control) 

for(a=0; a < key_len; a++) printf(”%02X”, key[a]); printf(”\n”); 

// Cpening the file for reading or writing 

fin = fopen(argv[l], ”rb”); fout=fopen(FDECODE, ”wb”); 

if ((fin==0) || (fout=0)) 

{ fprintf(stderr, ”-ERR: file open error\x7\n”); return -1; } 

// Main processing loop 

while(real_size=fread(buf, 1, buf_size, fin)) 

{ 

// Loop by the buffer 

for (a = 0; a < real_size; a+=key_len) 

{ 

// Loop by the key 

for(b=0; b < key_len; b++) 

buf[a+b] A= key[b]; 

} 

// Flushing the encrypted (decrypted) buffer to disk 



Chapter 8: Protection against File-by-File Disc Copying 371 

if (0 == fwrite(buf, 1, real_size, fout)) 

{ 

fprintf(stderr, ”-ERR: file write error\x7\n”); 

return -1; 

} 

} 

// Exiting 

} 

Let’s compile this program and start it: "DeXOR.c "03 - strangerlove.dat" 

9D 9E 9D 86. It would appear that we have failed! The decrypted file doesn’t look like 
an MP3 or a file of any other format. However, this simply means that this wasn’t 
a chain of zeros. Instead, it was something else — a sequence of ff characters, for in¬ 
stance. To test our assumption, let’s xor the 9D9E9D86h regular sequence by the num¬ 
ber FFFFFFh. If we are lucky, we will get the original key as a result of this operation. 
To do this, we will once again need HIEW, or even the built-in Windows Calculator. 

Start Windows Calculator, and select the Scientific option from the View menu. Then 

set the Hex radio button (or press <F5>, as alternative). Enter the value 9D9E9D86, 

then click the XOR button and enter ffffffff. Then press <Enter>. The calculator 
will reply with 62616279. This is the key for which we are looking. Enter it into the 
DeXOR program (separate bytes by blanks), and... 

...after renaming the file Strangerlove.dat with the name Strangerlove.mp3, it can 
be played using any MP3 player. Files of other formats contained on the protected 
CD can be decrypted in a similar way (naturally, they will have different decryption 
keys, but the method of finding the keys will be the same). 

What conclusions can we draw from this discussion? If you are going to encrypt 
files with predictable contents, choose an encryption-key length that is comparable to 
the lengths of predictable sequences, or, better still, a key length that exceeds this 
length by a number of times. As an alternative, you can use more advanced encryption 
algorithms instead of xor (if, that is, you aren’t too lazy to implement them). 

The task of obtaining a long non-periodic encryption key can actually be elegantly 

carried out using a random (or, more precisely, a pseudo-random) number generator. 
As you probably remember, the pseudo-random sequence generated by the rand () 

library function is constant at each program start. Therefore, it is an excellent but, 
at the same time, not self-evident key! The program provided below does exactly this. 

Listing 8.11. [crackme.765B98ECh.c] Using rand() for storing the encryption key 

/*- 

IMPLICIT GENERATION OF THE DECRYPTION KEY USING RAND() 
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* 

* Encrypts and decrypts files using the rand() function 

* for generating the key; since rand() generates the same sequence any time 

* the program is started, specified by srand(), we get a very long 

* non-periodic encryption key, ’’blinding” plain-text attacks. 

* Besides, if we modify the rand() code slightly, IDA will be unable 

* to detect it. This won't seriously complicate an attempt at cracking, however, 

* since rand() implementation is strangely primitive in most cases. 

* Additional protection levels are ensured by complicating the 

* data-processing algorithm (for example, it is possible to create the entire 

* series of decryptors, only one of which would produce useful data, 

* while others will return senseless garbage). 

* 

* NOTE: To encrypt the original file, start the program 

* with the ’’-crypt” command-line option. You only need to do this once 

* (the file available on the companion CD is already encrypted, and an attempt 

* to encrypt it will produce the opposite result — the file will be decrypted 

* and saved to the disk in decrypted form) . 

* 

* Build 0x001 09.07.2003 

-V 

#include <stdio.h> 

#include <math.h> 

#define FNAME ’’file.dat” 

#define MAX_SIZE (100*1024) 

// The name of the file to be encrypted or decrypted 

// Max. possible file size 

#define SEED 0x666 // Setting the rand() sequence 

// This can be any number. 

// It simply has to be present! 

//—[crypt]- 

// fname 

// buf 

// buf_size 

// need_store 

11 :0 - 

//- 

- file name 

- pointer to the buffer to which the decrypted data must be loaded 

- buffer size 

- is it necessary to store encrypted or decrypted file on the disk? 

do not write, != 0 - write 

crypt(char *fname, char *buf, int buf_size, int need_store) 

{ 

FILE *f; 
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long a, b; 

// Do not forget to initialize the random number generator explicitly. 

//If other branches of the program also use rand(), 

// the decryption result will ”float”. 

srand(SEED); 

// Opening the decrypted file 

f = fopen(fname, ”rb”); if (f==0) return -1; 

// Loading data into the buffer 

a = fread(buf, 1, buf_size, f); if (!a || (a == buf_size)) return -1; 

// (En|de)crypt the buffer contents using the key 

// generated on the fly by the rand() function 

for (b =0; b < a; b++) buf[b] A= (rand() % 255); fclose(f); 

// Debugging for automatic file encryption 

if (need_store) 

{ 

f=fopen(fname, ”wb”); if (f==0) return -1; 

fwrite(buf, 1, a, f); fclose(f); return -1; 

} 

return a; 

} 

main(int argc, char** argv) 

{ 

long a, x; 

long need_store = 0; 

unsigned char buf [MAX_SIZE] ; 

// TITLE 

fprintf (srderr, ’’crackme 765b98ec by Kris Kaspersky\n”) ; 

//If there is the debug key -crypt encrypt 

if ((argc > 1) && !strcmp(argv[l], ”-crypt”)) need_store++; 

// Load the FNAME file, decrypt and display its contents, 

if ((x=Crypt(FNAME, buf, MAX_SIZE, need_store))!=-l) 

for (a =0; a < x; a++) printf(”%c”, buf[a]); 

} 



Chapter 9: Protection 
Mechanisms Based on Binding 
to Storage Media 

That a properly produced digital copy is absolutely identical to the original seems to be 
a broadly held view at present, thanks to which consumers are often of the opinion 
that the only difference between the two options lies in the question of their price. 
In actuality, this isn’t the case, as no two CDs are absolutely identical to each other. 
In fact, each CD is characterized by a set of unique parameters that differentiate it 
from all other CDs. These unique characteristics (later on, we’ll call them marks) can 

be used by protection mechanisms for the identification of original media and weed¬ 
ing out unauthorized copies. 

Professional ethics oblige protection developers to use only the marks that satisfy 
the following (rather stringent) requirements as means for this type of identification: 

□ The mark must be detected without errors by all existing drives. 

□ The mark mustn’t be reproducible by any copier. 

□ The mark stability against any external influence (scratches or the natural aging of 

the disc) mustn’t be lower than that of other data written using a standard method. 

Unfortunately, a protection mechanism that can satisfy all of the above-listed re¬ 
quirements has yet to be invented. Quite often, customers encounter the situation 
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where a program legally purchased erroneously considers itself to be a counterfeit 
copy and refuses to run. What are chosen as the key characteristics by protection de¬ 
velopers? An analysis of existing protection mechanisms shows that they include, first, 

physical media flaws (both natural and those purposely introduced); second, the tim¬ 
ing characteristics for reading sector groups; third, reading stability; and finally, the 

information reported by the storage medium itself (atip, in particular). 

Putting Marks vs. Dynamic Binding 
The introduction on purpose of unique marks to the storage medium is a simple 
task in itself, and is widely used. Those whose financial resources are limited simply 
scratch the disc with a sharp needle. Those with access to more cash can afford to 
disfigure it with a laser. More sophisticated systems of protection use pits of non¬ 
standard shapes, or carry out complicated manipulations of the density and/or pat¬ 
tern of the spiral track. None of these methods, however, are without their own 
drawbacks. First, they require specialized equipment. Second, unique characteristics 
of the storage medium are considered as such because they can’t just be reproduced 
on demand. On the contrary, they are formed in process of medium creation. This 
means that, at present, when the disc is removed from the burner, the protection 
mechanism doesn't know the medium characteristics, to which it is bound. When 
the burning process has been completed, it's already too late to report these charac¬ 
teristics to the protection, since the disc is already burnt and CD-ROM drives do not 
support the writing of additional information. In theory, encoded marks can be 
placed into the diskette supplied along with the protected CD-ROM. Users, how¬ 
ever, are unlikely to be enthusiastic about this approach. Finally, these "unique" 
marks that are placed on the master copy of the CD are useless against the CD fabri¬ 
cation plants that prefer to steal part of the printed lot. 

Therefore, it is much better not to introduce any marks to the disc. A much better 

approach is to use those that already exist and try to detect their uniqueness on the fly. 
Is this possible? Actually, it's easy! The protection mechanism measures the disc char¬ 
acteristic that is most vulnerable to the maximum scatter from one medium instance 
to another (as a rule, this is the read timing characteristic). Then, according to a spe¬ 

cially designed algorithm, this characteristic is converted into a certain code, which 
is reported to the disc owner. The owner passes this code to the program developer 
and receives (naturally, at a price) the registration number derived from this code 
(for the sake of simplicity, let's assume that the registration code is equal to the disc 

characteristic code multiplied by 0x666). After the user enters the registration number, 
the protection mechanism carries out an inverse operation over this code and com¬ 
pares the result to the code of the disc characteristic (as a variant, the protection can 
compute the appropriate registration code for the code of the disc characteristic on its 
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own, and then compare it to the registration number entered by the user). If the re¬ 
sults match, then everything is OK. If not, the program refuses to operate1. 

The first advantage of this mechanism is that the creation of a protected disc does 

not require any specialized equipment. Any CD recorder is suitable for this purpose. 
The copying of a protected disc is accomplished without any problems. All duplicates, 
however, automatically lose their registration status, because the code of the disc char¬ 
acteristic changes. These duplicate copies can be registered legally, however, if the user 
contacts the program developer. This is the second advantage! 

Naturally, the algorithm used for generating the registration number must be 
chosen in such a way as to ensure that no dependence between the registration num¬ 
ber and the characteristic code can be traced. Furthermore, the procedure itself must 
complicate its investigation using disassemblers and debuggers as much as possible. 

Otherwise, the protection mechanism can be cracked easily and efficiently. 

Protection Mechanisms Based on Physical Defects 
The idea of protection mechanisms of this type lies in intentionally damaging disc 
surface in one or more locations. When the drive attempts to read sectors located in 

the damaged area, it will drag the read head for a while and then, after several failed 
reading attempts, return an error message. Most end-user copiers will be unable 
to copy such a disc, and will terminate their operation abnormally after encountering 

the first damaged sector. More advanced copiers capable of skipping damaged sectors, 
will succeed in copying all of the readable information on a defect-free disc. However, 

in this case, absolutely normal and readable sectors will be located in positions occu¬ 
pied by damaged areas (such sectors, however, will contain irrelevant garbage, since 
the copier failed to copy these them). 

The protection mechanism will check the storage medium for the presence of 

physically damaged sectors in the predefined locations, and, if the sectors with prede¬ 
fined numbers can be read without a problem, the protection will conclude that it is 
dealing with an unauthorized copy of the original disc. 

As a rule, the physical defects, to which protection mechanisms bind, are tiny spots 
(approximately one or two millimeters in diameter) burnt on the disc surface by 

a laser. They can easily be located visually when viewing the disc in reflected light 
(see Fig. 9.1). At first glance, it seems that we’d be able to reproduce an identical dam¬ 
age on the copied medium by precisely measuring their geometric coordinates (using a 
palette, for instance). Practice, however, shows that this isn’t the case. This is because 
sector numbers are not in any way bound to their physical location. Depending on the 

1 Some programs react rudely to the failed attempts at their cracking. For example, Alcohol 120% 
displays messages with obscene words ;). 
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width of the spiral track, the size of the Lead-in area and the lengths of the pits and 
lands, the same geometric area of the disc can contain sectors with different numbers! 
The probability of the fact that these sectors will coincide for two irrelevant lots of discs is 

negligible. Therefore, any attempt at blindly copying such a disc will fail. 
Under such conditions, we’ll have to play another trick, and imitate the read fail¬ 

ure programmatically. The first idea that comes to mind is creating a simple CD-ROM 
emulator that would report read error, when an attempt is made to access sectors that 
are checked by the protection. This will deceive the protection mechanism. At the 
same time, both the emulator itself and the image of the original CD can be easily 
burnt into a CD-R disc, using the over-burn method. Another technique of cracking 
consists in the implementation of a resident program that intercepts all attempts at ac¬ 
cessing CD-ROM and returns read error messages when checking specific CD sectors. 

Both methods were already widely used by the time of MS-DOS and 5” diskettes, 
so it is a tried and true technology. Clearly, a CD isn’t the same thing as a diskette, but 
the techniques for working with them are generally the same. The only problem is that 
Windows NT requires administrative privileges for installing a disc emulator, and not 
every user has been granted such privileges. With these considerations in mind, using 
the ’’interceptor” might be the better option, since no special privileges are required for 
intercepting API calls. All you have to do is to correct the import table! As a variant, it 
is possible to set breakpoints to API functions or set hooks on them. Which functions 
are to be intercepted will be covered later in this chapter. 

One positive difference in favor of CDs when compared with diskettes is that they 
allow for the emulation of physical defects at the logical layer. Do you recall the error- 
correction codes located in the end of each sector? Now imagine what will happen if 
they are purposefully modified so that an irrecoverable error is reported even in cases 
where a sector was read successfully (an error that can’t be corrected even by means of 
redundancy). The drive’s firmware, having carefully analyzed the situation, even hav¬ 
ing attempted to read the sector several times, will finally cease these vain attempts to 
position the read and return an error message. However, we aren’t going to clarify 
whether this was a physical or a logical error. This means that the software will con¬ 
sider both physical and logical errors as absolutely the same! In general, the protection 
might ask you to return the contents of the damaged sector in a RAW format. In this 
case, if the disc surface isn’t physically damaged, this sector will be read successfully. 
If this is the case, we are dealing with a copy. However, not all drives support RAW 
reading. Therefore, most legal users will blame protection developers for any attempt 
at industrial use of this type of check. These complaints are caused by hardware in¬ 
compatibilities, so this approach isn’t recommended. However, developers of protec¬ 
tion mechanisms can — to borrow a term from chess — play a knight’s move. If the 
drive doesn’t support RAW reading, then the protection relies on the information that 
is supplied to it. Otherwise, an additional check must be carried out. The copy will be 
usable only when inserted into the drives that do not support RAW reading. 
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Finally, it is possible to load the protection into disassembler/debugger, locate the 
procedure that checks for damaged sectors, and then crack it! Naturally, for this it is nec¬ 

essary to know how such a check is carried out, to which facts it is necessary to pay atten¬ 
tion, and what to search for (don’t even suggest a full analysis of the protection code). 

Operating systems of the Windows family are surprisingly rich with the tools for 
working with CDs at the sector level. Besides the obvious createFile/DeviceioControl, 

there are ASPI (Windows 9x/NT) and SPTI (Windows NT only). There is also a wide 
variety of other interfaces. When working under Windows 9x, you can directly call on 
the CDFS driver through the absolute_read1 function — int 2Fh (or, to be more pre¬ 
cise, through the 16-bit DLL stub, calling the Simulate Real Mode Interrupt DPMI 

function11). More detailed information on this topic is provided in the Q137813 "How 

Win32 Applications Can Read CD-ROM Sectors in Windows 95" technical note, which 
is supplied as part of Knowledge Base, accompanying the Microsoft Visual Studio 
product. There is also the source code of the function for working with the CD-ROM 
at the sector level. 

Under Windows NT, reading/writing sectors is even easier. It is enough to open 
the disc in the cooked-mode111, after which it will be possible to work with it at the 

logical level. Figuratively speaking, the entire contents of the CD will be interpreted as 

one large file. A detailed description of this process can be found in the Q138434 "How 

Win32-Based Applications Read CD-ROM Sectors in Windows NT" technical note, 
which is part of the Microsoft Knowledge Base. 

By the way, to check the disc for the existence of a physical defect, it isn’t necessary to 
go to the raw sector level. File exchange is a tool that is just as efficient. Obviously, a file 

that contains at least one damaged sector can’t be read, and any attempt at doing so will 
produce an error! The main advantage of this method is that it can be implemented us¬ 
ing any language and operating with only standard capabilities. There is no need for API 
calls and a monstrous iotcl. Calls to fopen/f read functions will be enough! 

Thus, there are many different methods of binding to the disc, and locating the 
protection mechanism in the code of the application being cracked is a tedious job. 

If setting breakpoints to the DeviceioControl function do not produce a result (which 
is rare), then you’ll have a tough time. You might end up spending all night cracking 

this protection. Let API spy and context search help you. While you probably agree 
that everything is clear with the spy, you may ask, why do we need context search? 
Knowing the numbers of bad sectors, you can try to locate the corresponding con- 

I EAX : = 15 0 8h, see Interrupt List by Ralf Braun. 
II This, by the way, is a very useful function, which allows Win32 applications do whatever things that are 
allowed to MS-DOS applications (free access to the hardware, working with interrupts, and so on). 
III The disc can be opened in cooked mode by means of the CreateFile function called as 
follows: hCD = CreateFile ("\\\\.\\X: ", GENERIC_READ, FILE_SHARE_READ | FILE_SHARE_ 

WRITE, NULL, OPEN EXISTING, FILE ATTRIBUTE NORMAL, NULL); where X stands for the drive letter. 
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stants in the body of the program. If the developer of the protection mechanism hasn't 

used any other additional tricks, the numbers of the sectors being controlled are writ¬ 
ten in the program code "as is." In this case, all that remains to do is to set a breakpoint 
to the corresponding memory cell and wait until that cell is accessed. Naturally, if you 

are investigating the program on a disassembler instead of a debugger, you'll need to 
use cross-references instead of breakpoints. 

If, despite all your efforts, you still cannot crack the protection, try to use Clone CD 
and/or Alcohol 120%. Both utilities recognize bad sectors and simulate them at the logi¬ 

cal level. Clone CD does this using error-correction codes, while Alcohol 120% achieves 
the same goal using error-correction codes and virtual disc! As practice has shown, there 
is no need to use virtual disc in most cases. Protection mechanisms in most cases are very 
credulous, and can be deceived easily by changing the checksum of a sector. 

Fig. 9.1. Disc with an intentionally damaged sector (a small "volcano" a little below 
the middle of the screen). Using specialized equipment allows you to burn 

the surface exactly in the center of the spiral track 

Thus, the reliability of protection mechanisms based on this approach is unsatis¬ 
factory. You'll have to carefully weigh all of the pros and cons before you decide to 
implement this kind of protection in your programs. Any advanced user who has 
some experience in working with Clone CD, will copy such a disc easily — and you'll 
find yourself out of job. Furthermore, to create physical defects with the required pre¬ 
cision and quality ("high-quality physical defect" is certainly an interesting phrase!), 
you'll require expensive equipment, something not available to every freelance pro¬ 

grammer. With regard to scratching the disc with a needle, this is not an option. First, 
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this method is unreliable, bad for the health of CD-ROM drives, and finally, not par¬ 
ticularly aesthetically pleasing. 

If you still decide to opt for this type of protection, bear in mind a few pieces of 
advice. First, introduce the damage on the side of protective layer, not on the side of 
the polycarbonate base. In other words, this should be done on the top side of the disc. 

When damaging the disc, remember that an attempt to create a deep radial scratch 
usually produces a very poor result. The disc loses its mechanical strength, which 
means that sooner or later, it will be torn to pieces by the centrifugal forces. This al¬ 
most always means curtains for the CD-ROM drive. It is better to create a small pin¬ 

hole in the reflective layer. This will be enough to make one or more sectors unread¬ 
able. This can be achieved using a normal sewing needle. 

Now, let’s discuss the question of how to avoid damaging useful data when intro¬ 
ducing physical defects. Scratching the unwritten area of a CD is practically useless, be¬ 
cause it won’t be read. For this reason, as an experiment, write something useless to the 
test disc (something that you won’t mind losing). One possible algorithm is as follows. 

1. Take a new CD-R disc and burn to it all of the files of your program, except for 
the information contained in the protection mechanism that binds to the disc. 
As a rule, this will be the main executable file of your program, although the pro¬ 
tection mechanism may be located in one of the DLLs or even implanted into 
a data file (although this, of course, is an exaggeration). 

2. Press the <EJECT> button and, using any method, mark the location of the last written 
track (for instance, you can just measure the diameter of the burnt area using a ruler). 

3. Once again, return the disc to the drive and write approximately 150 MB of gar¬ 
bage there. This trash will serve as the testing material for scratching. Don’t close 
the session yet! 

4. Now, introduce one or more physical defects to the disc. You can do this by prod¬ 
ding the area of the last written track with a sharp needle. 

5. Start any disc doctor and register the positions of all of the bad sectors. 

6. ”Hard-encode” the numbers of bad sectors into the program that you are going to 
protect and burn the protection module to the CD-R, closing all sessions. 

7. That’s all! Your protection is ready for use. 

Protection Mechanisms Based 
on the Read Timing Characteristics 

A read timing diagram is probably the most easily measured but, at the same time, 
unique disc characteristic. It varies considerably from disc to disc. Let’s carry out 
an easy experiment: Take any CD, create its copy, and then compare the read timing 
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diagram of the copy to that of original. The result that the author obtained is illus¬ 

trated by the two diagrams provided below (Fig. 9.2). (An "Agatha Christie" disc 
served as the test example and PHILIPS CDRW 24000 was the test burner. Disc copy¬ 
ing and creating the graphs was carried out using Alcohol 120% and the copying was 

carried out on an IMATION 48x disc). 

Fig. 9.2. Read timing diagrams of the original disc (a) and its copy (b) 

Just look at the difference! All discs are not the same. They differ so significantly 
that this can be noticed with the naked eye! How can we use this difference for pro¬ 

tecting programs? Identify some node points on the timing curve, which correspond to 
the "peaks," "dips" — or lack of either — in the specified section. Then convert them 
into the characteristic code, bearing in mind that the curve profile will change in the 
course of using the disc (and, besides, that it will vary from drive to drive). Some rup¬ 
tures might appear, while others might disappear. Therefore, for disc identification, 

it will be necessary to use the fuzzy comparison algorithm, which means that under 
conditions where several nodal points match, the disc is considered to be original. 
Of course, the softer the selection criteria, the greater is the probability that the 

copyleft will be considered to be copyright. Excessively stringent criteria will engender 
excessive complaints from those users who own older drives that distort the timing 

curve in such a way that an original and legally purchased CD suddenly ceases to be 
recognized as such. According to the author’s experience, a good balance between reli¬ 
ability and stability is ensured by the 3:10 ratio, which means that if at least three nodal 
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points out of ten are recognized, the disc must be considered original. In the long run, 
it would be much better if the protection doesn’t notice its presence than to swear at 
legal users. 

We should mention that, for building a timing diagram, it isn’t necessary to work 
with the disc at the sector level. Measuring read-timing characteristics for individual 
files produces an equivalent result. For this purpose, you can read using any standard 
means, such as, for instance, the f read built-in C function. Naturally, the files chosen 
for testing must be large. They must be large enough to guarantee that they don’t 
fit into the cache memory and make the operating system access the hard disk instead 
of retrieving these files from the RAM. The drawback of this approach is that for 
building the timing curve, you’ll have to read at least half of the entire disc (and this 
takes time), because the ’’resolution” capability of the file "measurer” is too low. On the 
other hand, won’t you have to read the data written to the hard disc anyway? If so, why 
not combine the useful with the pleasant?! 

If you are going to write a couple of small utilities to the disc, it is much better to 
measure the reading time of individual sectors for binding to the disc. Since the sector 
lengths "drift" within a wide range because of technology imperfection, the time re¬ 
quired for the drive to read them also drifts, because the disc rotation speed is con¬ 
stant! Well... practically constant. CDs, being self-synchronizing devices by their na¬ 
ture, do not impose stringent requirements on the drive-rotation speed. The main 
thing here is that the speed gradient must be considerably lower than the frequency of 
changes from pits to lands (because the generator is self-tuning when crossing their 
boundaries). It isn’t difficult to show that if the angular rotation speed of the disc is 
constant, its linear speed along the spiral track inevitably grows. If no additional meas¬ 
ures are taken, the pits on the external sectors of the disc will sweep by with such speed 
that the laser head won’t have time to read them. To prevent this, special mechanisms 
for dynamic regulation are used in CD-ROM drives to keep the linear-rotation speed 
within predefined limits. Besides, the specific values of linear and angular rotation 
speeds are unknown, and we cannot measure them with the necessary precision. If the 
disc-rotation speed is unknown, how can we measure the sector length? 

Let’s base our examination on the fact that for the short section of the spiral track 
disc rotation speed will remain more or less constant. By comparing the read times of 
the neighboring sectors, we’ll be able to determine the approximate relation between 
their lengths. If there is a short sector between two long sectors, there will be a peak on 
the graph. On the other hand, if the lengths of three or more sectors are more or less 
identical, there will be a long "plateau" on the graph. 

The results of investigating one of my own discs are shown in Fig. 9.3. This dull 
pattern, somewhat similar to a two-handled saw, is very capricious by its nature. 
Repeated runs of the program with the same disc will repeatedly produce different 
results. Nevertheless, most peaks and pits coincide, and it is still possible to identify 
the original disc. 
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Fig. 9.3. Nodal profiles obtained from two runs of the same disc 

Now let’s copy the disc and try to compare the obtained copy to the original. 

The pattern has changed! The relief has changed to a degree that makes it unrecognizable. 

First, the tops of peaks do not match. Second, the number of "pits” on the duplicate is 

surprisingly low (perhaps, it was a good disc specimen). Finally, instead of the large 

"trident” between the 14th and 22nd sectors that was present in the original, there is 

a large plateau sloping downward on the copy. 

Thus, measuring relative sector read times allows us to distinguish the original disc 

from its replica unambiguously. At the same time, such measurements can be easily 

carried out using the operating system’s built-in tools and is compatible with practi¬ 

cally all drive models. 
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Measuring Angles between Sectors 
Having heard that some protection mechanisms measure the angle between the first 
and the last logical blocks on the CD, I began to wonder how they actually do this? Be¬ 
cause I didn’t have programs protected using this method, and developers, naturally, 
do not disclose the technical details of its implementation, I had to use logical deduc¬ 
tion and confirm them through practical experiments. Having ruined a pack of CD-R 
discs and spent an entire day, I managed to discover the secret method and created 
a functional protection system. Let’s proceed step by step. 

As a matter of fact, CDs are sequential-access devices with accelerated rewinding, 
which is carried out by means of radial movement of the optical head along the spiral 
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track. Having moved along the track a certain distance, the head positions itself to 
a new track and waits for the arrival of the nearest sync group, which marks the start of 
each sector. Having read the address contained in its header, the head compares the 
current address with that which is required and, if necessary, moves forward or back¬ 
ward. This process is repeated until the head comes sufficiently close to the required 
sector (within the range of a single disc turn). Now the head stops fussing about and 
waits until the sector reaches its field of sight. 

Let’s assume that searching for the required track always takes the same time. 

Although this is not exactly soo the case, this assumption will do as the starting 

point for our discussion, since the positioning of the head to sectors located on ad¬ 

jacent spiral turns is carried out by means of head deflection by a magnetic field. 
This means that it takes place practically instantly. The head is moved in "slides” by a 

special drive mechanism, which operates at snail speed only in cases of positioning 

the head to remote sectors. Based on our assumption, the full access time to the 

sector will depend directly on the angle between the current sector and the sector 

that was read last (Fig. 9.5). Accordingly, having measured the access time, we will 

be able to measure the angle. The only problem consists in determining the head¬ 
positioning time. Since it varies significantly from drive to drive, we cannot rely on 

the absolute access time. However, relative changes are clearly discernible. Sequen¬ 

tially moving the head between sector 0 and sectors X, X+ 1, X+ 2, X+ 3 we will 

observe "wave-like” fluctuations in the full access time. Wave crests correspond to 

the maximum angle between these sectors, while wave troughs correspond to the 

minimum angle (in this case, the required sector is encountered immediately after 

the positioning process is completed). Having registered sector combinations cor¬ 
responding to the minimum and the maximum, let’s try to compare this combina¬ 

tion to the same combination obtained for the disc duplicate. 

Fig. 9.5. Measuring the angle between sectors 
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Have we succeeded? Actually, different lots of CD-R discs are formatted differ¬ 
ently, and the density of their spiral tracks is also different. Because of this, the angle 
between our sectors is also not the same, and these differences grow sharply with the 
growth of the distance between sectors. Let’s assume that the difference between the 
average sector length on the original and duplicate is 0.01 percent. Then, provided that 
full disc capacity is about 350,000 sectors, the change of the angle between the first and 
the last disc sector will be 3.5%, which is a measurable value. In practice, the declared 
formatting precision is never observable. When copying a model disc to media from 
other manufacturers, angular differences sometimes are as high as 180 degrees! 

Specially for this purpose, I have developed a program, which I called CD-physical 
pattern detector. Because of the limited volume of this book, I won’t provide its listing 
here, because it is quite large, and, anyway, the source code of this program can be found 
on the companion CD. Two screenshots illustrating its operation are shown in Figs. 9.6 and 
9.7. Having started it for execution and after allowing the CD-ROM drive to move its head 
for some time (the protection mechanism is actually recognized by these movements), we 
will discover that the access time to sectors with different numbers is measured in an inter¬ 
esting way (Fig. 9.6). Four or five neighboring sectors are read with approximately the same 
speed, then the curve bends sharply, almost doubling the access time. After one or more 
sectors, the access time changes stepwise once again. The alternation of peaks and pits is 
strictly periodical, deviating from the average position by only several sectors, which is 
probably caused by the variable time of the optical head’s moves. Naturally, the older the 
drive is, the lower is the measurement precision. However, if we have a large sample of 
measurements (Fig. 9.7), the measurement error will be relatively low. 
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Fig. 9.6. CD-physical pattern detector: a— unprotected disc, 
b — disc protected by StarForce 
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Fig. 9.7. CD-physical pattern detector at work: a — unprotected disc, 
b — disc protected by StarForce. The program actually allows to see 
the pattern! Provided that we have a large sample of measurements, 

the measurement error will be relatively low 

180 

60 

40- 

20- 

0 11111111111111111111111111111111111111111111111111111111111111111111- 

oro<£>ocMioco-i-Tth-.o<r>t£><ncMiccoT-T*rv.ocou> 

Number of the sector 

Fig. 9.8. The spiral track profile for IMATION (1) and TDK (2) discs 
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Fig. 9.8 shows profiles of spiral tracks created for two different discs. The first 

curve (1) corresponds to the disc produced by IMATION, while the second one (2) 
relates to a disc from TDK. Notice the difference between the two graphs! 

Protection Mechanisms Based on Weak Sectors 
I had already had plenty of hacking experience when I first encountered these protec¬ 
tion mechanisms, but I was greatly impressed by them all the same — anybody would 
be! Consider for yourself — copying of the protected disc takes place normally and 
without error. However, when the copy is checked, this check reveals numerous bad 
sectors, which show up even when the contents of the original disc are copied to the 
hard disk file by file and then burnt onto the CD-R from there. What causes this ef¬ 
fect? Is it a hardware malfunction or, possibly, the result of operations by some intri¬ 

cate driver, secretly installed by the protection during the first run of the protected 
program? The answer is no.. All of the equipment is operating normally and there is 
no stealth driver lurking. Bad sectors appear even when the disc is copied on a brand 

new computer with a freshly installed OS. 
Investigating the files being copied using debugger (HEX editor, disassembler) 

doesn’t reveal anything unusual either. If we crack the protection based on binding to 
the CD (provided that it is present there), then the protected application will start suc¬ 
cessfully from a hard disk (or Zip drive). It will, however, still be impossible to burn it 
onto the CD-R. If the protected files are corrected in some way (for example, by being 
compressed using any archiver), they will be copied to CD-R successfully and without 
errors. This, however, isn’t exactly what we are after. 

Thus, the reason for the strange behavior on the part of the protection must lie at 
the physical, and not the software level. This is the most cunning anti-debugging tech¬ 
nique that I have ever encountered! Actually, from the point of view of a hacker with¬ 
out access to sophisticated measurement equipment at his disposal, a CD-ROM drive 
is a ’’black box,” operating according to approximately the same principle as any other 
storage media. Even if we open it, we won’t see anything other than a mess of wires 
and chips. The only thing that remains is to read the standards carefully. After all, if 
the protection mechanism works on all (or at least on the overwhelming majority of) 
CD-ROM models, it must be based on standard properties, features or characteristics. 

Here is one part of the standard: "A regular bit pattern fed into the EFM encoder can 

cause large values for the Digital Sum Value in cases where the merging bits cannot reduce 

this value (see annex E). The scrambler reduces this risk by converting the bits in bytes 

from 12 to 2, 351 of a Sector in a prescribed way”. If you still think that CD-ROMs are 

the ideal storage media for executable files and databases, you are sadly mistaken. CDs 

were initially developed for storage and playback of music. Only after considerable ef¬ 

forts and wondrous advances in engineering theory did they agree to store binary data. 
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Note the non-itatlicized words in the quotation above. Scrambler does not guarantee 

that the data being written will be readable. It simply reduces the risk of encountering 

unfavorable (from the drive’s point of view) sequences to an acceptable level. Never¬ 

theless, with enough effort, it is quite possible to create a couple of files stuffed with 

such unfavorable sequences. Theoretically, these files will be readable, but only CD- 

ROM models of the highest quality will be able to cope with this task, while all others 

will fail and return an error message. 

Let’s consider the following combination: 04 B9 04 B9 04 B9... Having revised 

the EFM encoding table, we will find out that 04 is converted to 01000100000000, 

and B9 to 10000000001001. Now let us try to write them together: 

01000100000000 xxx 10000000001001 yyy 01000100000000, where xxx and yyy are 
merging bits. Since 04 has eight trailing zeros, and B9 starts with 1, the only possible 
combination for the first set of merging bits will be 100. Accordingly, because B9 is 

terminated by l and 04 has only one starting zero, the only possible combination for 
the second set of merging bits will be 000. 

010001000000001001000000000100100001000100000000 

Fig. 9.9. Physical representation of the 04 B9 04 sequence 

Look at the effect that this sequence will produce (Fig. 9.9). The DSV value is 
sharply negative! This means that pits dominate over lands and disc surface becomes 
very dark. Consequently, the tracking device will lose the track because of insufficient 
brightness of the light falling into the photoelectric receptor. Most interesting here is 
the fact that, according to the standard, such bit combinations are not obliged to be 
readable (although some drive models cope with this task successfully). Would anyone 
still cling to the fallacy that CDs represent a reliable storage medium? 

If, of course, we simply create a file stuffed with \x04\xB9\x04\xB9..., the process of 
its recording and subsequent reading will take place without problems, because the 
data flow being recorded is scrambled previously! A scrambling algorithm chosen on 
the basis of expertise shouldn’t allow for effective conversion. Otherwise, the hacker 
can pass the most unfavorable regular sequences through an ’’anti-scrambler,” and 
then, after repeated scrambling, they will be written to the disc in their initial form. 
So here’s a complaint — the scrambling algorithm used by the CD-ROM allows for 
this kind of reversible conversion! All you’ll need for the writing of an anti-scrambler 
is a couple of free evenings and the text of the ECMA-120 standard. Since the scram¬ 
bling algorithm is based on the xor function, repeated scrambling of the data already 
processed by the scrambler converts this data back to its initial form. Thanks to this, 
we can get by with just one function — that of the scrambler. 
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Having passed the protected files through the scrambler, we will discover that they 

contain at least one very unfavorable sequence, for which the DSV is strongly negative 

(or on rare occasions, strongly positive). Generally speaking, it is considerably differ¬ 

ent from zero. Having complemented the scrambler with the function for computing 

DSV (details of its implementation are described in ECMA-120), we will get an auto¬ 

matic scanner for protection mechanisms based on weak sectors. Wow! Isn’t this 

great?! If particular unfavorable sequences are discovered in the protected files, don’t 

even try to copy them to CD-R — you’ll fail. 

But how can we explain the fact that these same unfavorable sequences are suc¬ 

cessfully read from the original disc?! To answer this question, we’ll have to go deep 

into the maze of CD spiral tracks. This travel will be long and full of dangers. People 

will try to warn you and talk you out of it. For instance, here is a quotation from the 

work of some anonymous author: ". ..actually, things are even more interesting, since, in 

addition to sectors, there are also sections of the same effective size, hut having mismatch¬ 

ing boundaries, part of the addresses being sector addresses and part being section ad¬ 

dresses. However, it is better to forget about it immediately;)". The smiley sign terminat¬ 

ing this phrase stimulates your curiosity and leads you to reread the standard 

repeatedly (because, unfortunately, there is nothing more informative at hand). One 

way or another (see the forum on http://club.cdfreaks.com), we will discover that 

boundaries of sectors and frames may or may not coincide. The sector can start from 

0, 4, 8, 12, 16, or the 20th byte! Changing the starting point inevitably changes the DSV 

of the first frame and the most interesting facts begin here. If the number of binary 

ones of the frame is odd, then the second frame is inverted (which means that the pits 

and lands exchange positions). Otherwise, the next frame appears ”as is.” Thanks to 

this, it becomes possible to compose a regular sequence that will be quite favorable for 

one of the entry points and very unfavorable for all others. 

Unfortunately, recorders still do not allow you to choose the entry point arbitrar¬ 

ily, and set it on by themselves and at their own discretion. Good recorders (like 

Plextor) choose the entry point so as to minimize the absolute value of the sector DSV 

(because of this, they allow for the copying of protected discs without problems). Un¬ 

fortunately, the vast majority of other models aren’t this clever, and cannot cope with 

the task of DSV minimization. Either they don’t try to compute the correct entry point 

or they compute it incorrectly. Consequently, errors appear when trying to read the 

copies of protected discs. 

Nevertheless, advanced copiers (Clone CD, for example) have long ago bypassed 

protections of this type. How did they manage this ? Having prepared the sector image 

for burning in the raw mode, they slightly disfigure its contents, thus breaking the un¬ 

favorable sequences (the inversion of a single data bit of the source data will dramati¬ 

cally change the data after scrambling). Error correction codes (prepared beforehand 
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for the source data) are not changed. As a result, writing the sector written using this 

method will produce an error, and the drive will have to correct it on the basis of re¬ 

dundant information contained in the error-correction codes. After correction, the 

sector is returned to its initial state. 

The advantage of this approach is that the copy of the protected disc contains 

a weakened protection mechanism that can be freely duplicated in raw mode. Stan¬ 

dard copying will result in error, though, because honest copiers place "corrected" 

sectors on the CD. On the other hand, copiers writing sectors "as is" cannot differenti¬ 

ate intentionally introduced errors from physical read errors. Writing the uncorrected 

sector will result in the growth of the number of errors. Consequently, when attempt¬ 

ing to make a copy of a copy, we may receive an unreadable duplicate (a considerable 

drawback). Is there any way out? Read the sector, correct it, pass it through the scan¬ 

ner, and, if any unfavorable sequence is detected there, intentionally invert one or 

more bits there. Copying errors will then cease to accumulate! 
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from CDs 

CD-R and CD-RW discs represent ideal backup media for saving moderate 
amounts of information (and any serious programmer carries out periodical backups 
of the information entrusted to him or her). Unfortunately, no one is perfect, and no 
job can be completed without some danger of errors (ERRARE HUMANUM EST 
"To err is human", as the ancients said). Therefore, the accidental deletion of files from 
CD-R/CD-RW discs, as well as the clearing of these disks, sometimes happens. Experi¬ 
ence, in fact, suggests that this happens far too often. 

To our knowledge, special utilities for restoring lost information from CDs have 
yet to be developed (or, at least, be widely available on the market), therefore, recov¬ 
ering information from corrupted CDs is something you will have to tackle on your 
own. In this chapter, we’ll try to explain what can be done in this case and how to ac¬ 
complish this task. 
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Restoring Deleted Files from CD-R/CD-RW 
Having announced their support for multisession CDs, Microsoft’s operating systems, 

including Windows 9x and all versions of Windows NT (up to W2K) have maintained 
their silence about the fact that this support is only partial. Each session is a standalone 
volume (a logical disk, according to Windows terminology), which has its own file 
system and its own files. Thanks to the pass-trough numbering of CD sectors, the file 
system of one session can reference files physically located in any other session. In or¬ 
der to ensure the possibility to work with the disk in the same way as with a unified 
volume, the file system of the last session must include the contents of the file systems 
of all previous sessions. If this condition isn’t met, then the TOCs of all other sessions 
will be lost when viewing the disk using standard equipment. This is the case because 
Windows mounts only the last session of the disk and ignores all the others. Programs 
for burning CD-R/CD-RW discs, by default, add the contents of the file systems from 
the previous sessions to the current one. However, this doesn’t necessarily mean that 
the last session always contains everything that was present in the previous sessions. 

For example, let’s look at how files are deleted from CD-R/CD-RW disks. No, this 
isn’t a misprint (or an error, or a joke)! The contents of CD-R disks can, in principle, be 

deleted, despite the impossibility of re-writing them. To imitate file deletion, CD burners 
simply do not include a reference to the file that has to be ’’deleted” into the file system of 
the last session1. Consequently, although the "deleted” file is still present on the disk (it is 
physically present, since it takes up some disk space11), this file won’t be displayed in the 
directory when viewing the disk contents using Windows’ built-in tools. So what is the 

meaning of "deleting" files from the CD-R if the available disk space isn’t increased, but, 

on the contrary, is reducedV, In fact, the actual sense of this operation (if, of course, we 
can use the term "sense") lies in hiding the "deleted" files from normal users. Since de¬ 

leted files aren’t visible when viewing the disk contents using standard tools, they are 
formally unavailable to the normal user. As a result, they are not available for Windows 

standard built-in tools. On the other hand, Macintosh allows the user to mount any disk 
session as a separate volume, thanks to which all "deleted" files immediately reveal 
themselves when viewing multisession discs under Mac OS. 

The situation is similar when deleting information from CD-RW discs. Despite the 
theoretical possibility of physically destroying their contents, most programs for writ¬ 
ing disks support only a function for clearing the entire disk, and are unable to delete 

I However, not all programs are capable of doing so. For example, Roxio Easy CD Creator provides 
this possibility, while Stomp Record Now! doesn’t. 
II The reduction of available free space is explained by the fact that each newly opened session re¬ 
quires some space. However, if deletion of some files is accompanied by writing another files, it is 
necessary to open a new session, anyway, and in this case the deletion overhead is not present. 
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individual files. Thus, all that was said above about CD-R discs is equally applicable 
to CD-RWs. 

Therefore, if you write information to a disc in order to pass it to a third party, never 
use discs that have contained confidential data. The "deletion" of data previously written 
to a disk doesn’t mean complete removal! 

Viewing the contents of a CD that you have received from a friend or colleague, 
or even just recovered from the garbage, it makes sense to try viewing previous ses¬ 
sions. Sometimes, it is possible to find a lot of hidden information. As experience has 

shown that there is often much of interest to be found. On the other hand, you might 
need to restore incidentally deleted files from your own disk, or even recover an entire 
session that has been destroyed by accident. (Some programs for writing CDs allow 
users to choose: they can either add a file system from the previous session when creating 
a new session, or include only new files in the new session. Choosing incorrect settings 
when preparing to write a CD will result in the loss of the contents of all of the previous 
sessions. Fortunately, however, this loss is reversible.) 

The lack of standard tools for the selective mounting of sessions seriously compli¬ 
cates the life of all Windows users, leaving them to search for ways to bypass this 

problem. Ideally, it is best to implement a custom CDFS driver providing the required 
minimum of functional capabilities. However, this task is not simple and involves se¬ 
rious labor. This undertaking only makes sense in cases where you need to recover ac¬ 
cidentally deleted files several times a day. Writing a set of utilities for working directly 
with the disc at the physical level is much simpler. In this case, all that you need is 
a display of the contents of the file system in a readable form. We are particularly in¬ 

terested in the following information: the file name and its starting address and length. 
Knowing these three important attributes, you can "grab" the file to the hard disk 

with ease and then do whatever you need with it. This technique is ideal for recovering 
small amounts of deleted (overwritten) files from any sessions. However, it is not 
practical in those situations where it is necessary to recover the entire session. 

In such cases, it makes more sense to copy the sessions being recovered to a separate 
CD-R/CD-RW disc. 

Getting Access to Deleted Files 

Before we start recovering deleted files, let’s recall the main principles of ISO 9660 
(Joliet) file system organization. The 16th sector of the first track of each session is 

strictly bound to the primary volume descriptor. This is easily recognized by the CD001 

signature, which is stored in the sector by offset 1. If this is really the case (suppose that 
we have a disc without a file system, such as an Audio CD), then at the offset 156 

of this sector you’ll find the Directory Record of the root directory. Above all, the fol¬ 
lowing fields of this record are of the highest importance: the length of the Directory 
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Record itself (the byte at offset 0), the starting LBA address of a file/subdirectory 
(double word; in low-endian format, by offset 2), the length of file/subdirectory (dou¬ 
ble word; in low-endian format, by offset 10), the file attributes (byte by offset 25), the 
length of the name of the file/subdirectory (byte at the offset 32) and, finally, the file¬ 
name itself (the chain of bytes starting at the offset 33). The Joliet file system is organ¬ 

ized in a similar manner. Its corresponding volume descriptor, however, is located 
in sector 17, instead of sector 16. 

If the first bit, counting from zero, is set to 1, then we are dealing with a subdirec¬ 

tory. Otherwise, the object in question represents a file. Nested directories (subdirec¬ 
tories) represent sets of Directory Records, each of which points either to a file or to 

another subdirectory. 
Therefore, in order to view the contents of an arbitrary session, we need only know 

the starting address of its first track. This information can be obtained easily by read¬ 

ing the TOC at the raw level (command: 43h, format: 02h). Besides this, it is possible to 

use any CD-burning utility that is able to display information about the disc geometry 

(for instance, utilities such as Roxio Easy CD Creator, Stomp Record Now!, Ahead 

Nero — Burning Rom, and many other tools, are capable of doing this). Having in¬ 

creased the starting address of the first track by 16 (when working with ISO 9660) or 

17 sectors (for working with Joliet), we will find the volume descriptor, i.e., the root 
directory. After that, recursive traversing of the directory tree will function as a well- 

lubricated mechanism. While running Windows, there is not even the need to worry 
about stack overflow, provided, of course, that the file system doesn’t contain severe 

errors that will result in a fall into infinite loops (by the way, these types of tricks are 
frequently used in protection mechanisms). 

Now, all that is left is to view the directories of all of the disk sessions in order 
to find the files that are missing from the directory of the last session. When doing 

so, it is necessary to pay attention not only to file names, but also to their starting 
addresses. Files having identical names, but different starting addresses, are different 

files! For example, if you periodically save your entire current project to CD, always 
writing it with the same name, then all previous versions of this file will be lost for 

the built-in Windows tools. However, a "manual” investigation of the contents of all 
of the sessions will allow you to recover any of the file versions that were earlier 

saved on the CD! By the way, in practice, this need arises frequently, so this skill 
is always useful. 

For further experiments, we will need the iso9660.dir utility, which was can be 

found on the companion CD. Using any CD burning program, let’s write three ses¬ 

sions on CD-RW/CD-R so that the first or the second session will contain some "de¬ 

leted” files that we actually need to find. 
Let’s assume that the starting addresses of the disk sessions are located as 

shown below. 
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Listing 10.1. The starting addresses of the first tracks of each of the three disk ses¬ 
sions (track number AA is the Lead-out area and doesn't present any interest to us) 

> ISO9660.dir.exe 1.1 

track | Start LBA 

1 I 0 

2 | 13335 

3 | 22162 

AA | 24039 

Now, let’s call the ISO9660.dir.exe utility consecutively, specifying for it the fol¬ 
lowing starting addresses: 0, 13335 and 22162. Having done so, we’ll see the contents 

of the first, second, and third sessions, respectively. For convenience of comparison, 
the result is presented in the form of a horizontal table: 

Listing 10.2. A comparison of the contents of the directories of three sessions 
shows that the second session contains the deleted file, "See You.mp3" 
(in this listing, in bold), which is missing from the third session 

>ISO9660.dir 1.1 0 -Joliet 

start|size |name 

-+-+- 
22 |2048 |. 

22 |2048 |.. 

25 |3591523|PersonalJesus.mp3 

>ISO9660.dir 1.1 13335 -Joliet 

start|size |name 

-+-+- 
1335712048 |. 

13357|2048 |.. 

25 |3591523|PersonalJesus.mp3 

13360|3574805|See You.mp3 

>ISO9660.dir 1.1 22162 -Joliet 

start|size |name 

-+-+- 
22184|2048 |. 

22184|2048 |.. 

25 |3591523|PersonalJesus.mp3 

22187|3472405|Strangerlove.mp3 
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As you can see, the second session contains the "See You.mp3" file, which is miss¬ 

ing from the TOC of the third session. This means that this file is practically unavail¬ 

able to built-in OS tools! In fact, the dir command shows only two files: 

Listing 10.3. The operating system views the disc contents as shown in this 
listing. However, we aren't so easily deceived! We know that there is one 
deleted file 

The volume in drive G has the NEW label. 

Volume serial number: 4171-70DC 

Contents of the G:\ directory 

30.06.2003 00:10 3 591 523 01 — Personal Jesus.mp3 

30.06.2003 00:12 3 472 405 03 — Strangerlove.mp3 

2 files 7 063 928 bytes 

0 folders 0 bytes free 

In order to restore this file, it is enough to run our utility with the following com¬ 

mand-line options: ISO9660.dir.exe 1.1 "See You.mp3" 13360 3574805 or to use 

any program capable of grabbing disc sectors (in this case, however, we’ll have to "cut 

off’ the tail of the last sector by the required value manually). Briefly speaking, 

we must read 3,574,805 bytes, starting from sector 13,360, up to the last sector of the 

file (because of the lack of sector fragmentation, sectors belonging to the file are always 

located sequentially). 

If everything has been done correctly, a new See You.mp3 file will appear on the 

hard disk, which you can play using any mp3-player. It is also possible to use any CD- 

burning program to write the restored file to the same CD by adding another session 

to it. Of course, this is not the optimal solution, since the recovered file will now be 

written twice. Unfortunately, however, none of the burner utilities with which I am 

familiar allows for interfering with the process of file system generation or for the 

manual creation of links to files from previous sessions. 

Now let’s prepare the disc so that we can test the recovery procedures. Write a file 

to CD. Then, after modifying its contents slightly, write the file to the same disc under 

the same name one or more times. Make sure that when you are viewing the disc 

contents using built-in standard Windows tools you can see only one file — namely, 

the one that was written last. Now imagine that it is of critical importance to gain ac¬ 

cess to one of the earlier versions. No problem! Start iso9660.dir, and you’ll see that 

the disc contains the sessions shown in Listing 10.4. 
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Listing 10.4. The disk being recovered has two sessions with starting addresses 
equal to 0 and 12,000, respectively 

>ISO9660.dir.exe 1.1 

track | Start LBA 

1 I 0 

2 | 12000 

AA | 12600 

By consecutively starting the iso9660.dir utility with the 0 and 12.000 command-line 

options, you’ll find that... Well, don’t rush forward. Now you’ll see everything for yourself. 

Listing 10.5. Both sessions contain the same file, asm.drf.zip; however, the 
starting addresses of the file don't match, and their lengths are also different 

> ISO9660.dir.exe 1.1 0 -Joliet > ISO9660.dir.exe 1.1 12000 -Joliet 
start | size | name start | size | name 

22 | 2048 1 . 12022 12048 1 . 
22 | 2048 1 . . 12022 12048 1 . . 
25 138189 |asm.drf.zip 12025 1354533 |asm.drf.zip 

At first glance, everything appears to be OK. The asm.drf.zip file is present in both 
sessions, and if you aren’t careful enough, it could seem to you that you are dealing 
with the same file in both cases. However, a closer investigation shows that starting 
addresses of the files do not match. Therefore, we are dealing with two different files! 
The file lengths are also different and, to all appearances, the last file represents 
a newer version. To retrieve the previous version of the file, issue the following com¬ 
mand: ISO9660.dir.exe 1.1 asm.drf.zip 25 38189. It really works! 

The iso9660.dir.exe utility is, unfortunately, terribly inconvenient for practical use. 
But don’t judge it too severely. After all, it is only a demo example. In an attempt to 
stimulate the reader’s creativity, I suggest that you implement all of the missing func¬ 
tionality on your own. Task number would be the development of a convenient GUI 
for the program, or, even better, the rewriting of it as a console application. 
For example, you can write a plug-in for FAR Manager displaying the contents of the 
chosen session in a pane. This is considerably simpler to do than to program a fully- 
functional disk driver. From the end-user point of view, however, the effect will be the 
same. The task of comparing file names and starting addresses should be automated, 
since manual searches for deleted or overwritten files are extremely inefficient. In fact, 
a typical CD-ROM contains thousands or even tens thousands of files distributed over 
a large tree-like hierarchy. Naturally, testing and analyzing them all is a tedious proposition! 
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Recovering Entire Sessions 

An alternative method for the recovery of deleted files consists of the removal of one 
or more of the last sessions from the disc (we will refer to this method as "peeling the 
onion"). When proceeding in this manner, you expose each previous "layer," which 
now becomes the most recent and, consequently, the one accessible by the operating 
system’s standard tools. Naturally, physically removing sessions from CD-R discs is 
virtually impossible (the removal of sessions from CD-RW discs is theoretically possi¬ 
ble. The problem here, however, lies in the lack of required software). However, 
nothing prevents us from saving a disk image as a file, process the created file appro¬ 

priately, and then burn it again. (In the case of a CD-RW, the same disc can be used. 
In the case of CD-R’s, we need a new disc.) No one would argue that this method isn’t 
long and tedious, but no more so than writing a custom burning program. 

So let’s start to prepare an experimental disk. Write one or two sessions on the test 

CD, instructing the burning program to join the file system of the new session with 
that of all previous ones (this usually takes place by default). Then, let’s add another 
session, this time separate from all of the others. To do this, in Ahead Nero, you have 

to choose the Start Multisession disk menu item, instead of Continue Multisession. 

In Stomp Record Now!, it is necessary to select the New Volume option, instead of 

Load Last Track. When you start the recorder to burn a CD, you will notice that the 

contents of all previous sessions have been lost. For the sake of accuracy, we should 

point out that, for instance, Stomp Record Now! allows you to recover the "ruined" 

disk easily. To do this, simply choose the Load Track 1 item from the Mutlisession 

drop-down list and write any file to the disc. This is necessary in order to initiate the 
recording process. After this, the contents of session 1 will appear, while that of the 
session 2 will disappear into thin air. Is this a problem? Let’s change the option from 

Load Track 1 to Load Track 2 and initiate recording once again. This time the con¬ 

tents of the first two sessions will reappear, plus some files that we were forced to rec¬ 

ord in order to get Stomp Record Now! to agree and start burning. 

Ahead Nero, when the Continue Multisession option has been selected, automati¬ 
cally requests that the user specify the session which holds the contents that it should 
use. Unfortunately, current versions of this program do not allow for the merging of 
the TOCs of two or more sessions. If there is, however, such a need, it is possible to 

use the sequential "cascading" method described above. 
If you do not have Stomp Record Now! (or a similar program) at your disposal, it 

will be necessary to recover the overwritten sessions manually, i.e., using programs 
such as Clone CD or Alcohol 120%. Let’s create one more test disc, the last session of 

which overwrites all of those before it. Then use Clone CD to create a disc image, and 
then the only thing left to do is to discard all references to the last session from the 
IMAGE.CCD file. The contents of the Sessions field must first be decreased by one. 
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Then, it is necessary to discard all [Entry] sections, for which the Session value was 
the latest. Then subtract the number of the deleted [Entry] sessions from the value of 

the TocEntries field, and, finally, remove the last [track] section. Now, the edited im¬ 
age can be written to a new CD and there will be no last session — just as if it had 
never been present! 

Beginners'Errors, or What You Should Never Do 
You will sometimes hear the suggestion that grabbing one of the sessions of the disc 

being recovered, turning it into an ISO image and, then, mounting it to a virtual CD- 
ROM drive (or burning it to a physical disc) will make it possible to access its contents. 

In this way, we’ll be able to quickly view the contents of all required sessions. 
You’ll be able to access the deleted files and do whatever you want with them. 

Be careful! When viewing the contents of the grabbed session, always bear in mind 
that: First, files belonging physically to other sessions will be still not available from the 
current session, despite abundant references to these files. When referencing a file that 

doesn’t really exist, you’ll either be confronted with some senseless garbage or an error 
message. Your system may also end up freezing. If this happens, simply press the 
<EJECT> button. Windows will immediately wake up and joyfully display a Device 

not ready message. Second, because of the pass-through sector addressing, each 
grabbed session must be written to the same disc location where it was located earlier, 
or all references to starting file addresses within that session will become invalid. Usu¬ 

ally, the desired result can be achieved by means of changing the starting address of the 
first track. The method for doing this will be described in the next section, which is 
dedicated to restoring information from cleared CD-RW discs. 

Restoring Cleared CD-RW Discs 
There are two principally different methods of clearing CD-RW discs: quick and full. 

When carrying out quick erasing, only the TOC area is actually removed from the disc. 
As a result, the disc appears to be a ’’blank” one, even though its main contents remain in¬ 
tact. When carrying out full erasing, conversely, the laser "burns” the entire disc surface, 
from the first pit to the last. Naturally, this process takes time, with the full erasing of a disc 
taking about 10 minutes, while quick erasing can be done in just a couple. 

The recovery of fully erased discs is possible only using special equipment that is 
capable of detecting even the slightest changes in the reflective character of the re¬ 
flecting layer. Naturally, this kind of equipment is not available to most users. On the 

other hand, discs that have been erased using quick methods can be restored on 
a standard recorder, although not every model is suitable for this purpose. 
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We won’t concentrate here on the ethical aspects of this problem. For simplicity, let 
us suppose that you need to recover your own CD-RW disc that you have accidentally 

erased. Or, suppose that this will be a perfectly legal operation requested by your em¬ 
ployer. Bear in mind, however, that restoring confidential information from erased CD- 
RW discs belonging to someone else can be classified as unauthorized access to that in¬ 
formation and can bring with it legal consequences. To carry out experiments related to 

the recovery of information from cleared CD-RW discs, you’ll need the following: 

□ A CD-RW drive that doesn’t keep the correctness of TOC contents too carefully, 

supporting the RAW DAO mode and capable of reading the Pre-gap content of 
the first track. Bear in mind that not every CD-RW drive is suitable for this pur¬ 
pose, therefore, be prepared to test a lot of different devices. For example, of the 
two devices that I have at my disposal, only the NEC drive is suitable for this pur¬ 
pose, while PHILIPS is unable to do this. 

□ Recording software characterized by advanced capabilities, allowing for the manipu¬ 
lation of the service areas of the disc as necessary. For instance, you can use Clone 
CD, CDRWin, Alcohol 120%, or any other similar utility of your choice. However, 

all of the material that follows is oriented exclusively towards use of Clone CD. 
Thus, if you choose another utility, you might encounter some problems. If you 
are not sure that you’ll be able to solve these problems on your own, use Clone 

CD, and later on, as you acquire the required experience and professional skills, 
you’ll become able to restore discs using other similar program. 

□ Some tool for working with the disc at the sector level This must be a utility allowing 

you to read any specified sector (provided, of course, that this sector can be read 
by the drive equipment), which doesn’t attempt to skip sectors that, according to 
its own reading, do not contain anything of interest. The copiers of protected discs 
listed above are not suitable for this purpose, since they refuse to read sectors that 
are ’’useless” from the program’s point of view. There may be some copiers 
that behave differently, but I am unaware of any. Instead of testing one copier after 
another, I have written the required utility myself. 

Before starting our experiments, let us try to understand why the disc becomes 
unreadable after being cleared. This question isn’t as silly as it seems. After all, 

the information required for positioning the head and searching for the required sec¬ 
tors remains intact after fast disc clearing! Control information is distributed along 
the entire spiral track. Thus, for reading the disc at the sector level, TOC is not, generally 

speaking, required at all. While, admittedly, missing TOC significantly complicates the 
analysis of the disc geometry, and, in the general case, the drive has to read the entire 
disc in order to determine the number of disc tracks/sessions. However, when recov¬ 
ering the lost information, the time factor isn’t the thing of primary importance, 

and can be neglected. 



Chapter 10: Data Recovery from CDs 403 

Nevertheless, after any attempt at reading any sector of the cleared disc, the drive 
persistently returns an error. Why is this? The answer is straightforward and easy. 
This is simply to protect against reading information that is certain to be incorrect. 
Not a single one of the drives with which I am familiar could read a single sector out¬ 
side the Lead-out area (in fact, at the software level, the contents of Lead-in/Lead-out 
areas also is unavailable). Nevertheless, this isn’t a principal or conceptual limitation. 
Removing "extra” checks from the drive firmware will allow us to read such disks 
easily. I’m not suggesting that you disassemble the firmware code. This is a difficult, 
labor-consuming task, that is, most of all, particularly safe. If you hack the firmware 
incorrectly, you’ll ruin the entire drive, without hope of repairing it. We’ll go about 
this another way! 

The method for recovering information that I suggest is, generally, writing a ficti¬ 
tious TOC to the disc. The Lead-in and Lead-out addresses of this TOC must point to 
the first and the last sectors of the disc, respectively, and the starting address of the first 
track must coincide exactly with the end of the Pre-gap area, which, according to the 
standard, must occupy no less than 150 sectors (or 2 seconds, if converted to absolute 
addresses). After this easy operation, the drive will obediently read the original content 
of the cleared disc, provided, of course, that we manage to tune the CD burning soft¬ 
ware in such a way as to make no attempts at interpreting the pointers to Lead-in/ 
Lead-Out areas supplied to it as an instruction to burn the entire disc surface after 
writing a fictitious TOC. 

Experience has shown that Clone CD refuses to write such a TOC, complaining 
about the mismatched sizes of the disc and image file. Alcohol 120% carries out this 
task without any complaint, but does so in a manner that is not what we desire! Hav¬ 
ing stuffed the entire disc with unimaginable garbage, it informs us that write errors 
have occurred, and that, possibly, we must check the equipment usability. 

Well, let’s try another approach. Let’s write one real track to the disc, taking up the 
maximum possible number of sectors (300, according to standards, although some 
drives are quite content with smaller values), but also extend the Pre-gap from two 
seconds to the entire drive! As a result, we’ll lose only 300 trailing sectors, but, in ex¬ 
change, we’ll gain access to the entire remainder of the contents. Taking into account 
that that there are slightly above 300,000 such sectors on the disc, it isn’t difficult to 
determine that the percentage of successfully recovered information will be about 
99.999 percent of the total disc capacity, provided that the entire disc was filled with 
useful info (which is a rarity in itself). If you are not satisfied with this, it makes sense 
to develop a custom program that can correctly write a fictitious TOC. The TOC area 
is written by the drive itself on any occasion, however, it is possible to do without 
Lead-out if you carefully treat the disc. The main goal in this case is an attempt to cor¬ 
rectly read the sectors that fall beyond the disc limits. Otherwise, the drive’s behavior 
will become unpredictable. I should point out, however, that I have never encountered 
a situation where it was necessary to recover a completely filled disc. 
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The recovery procedure comprises three parts: Preparing the source image of the 

track with a normal Pre-gap; increasing the Pre-gap to the size of entire disc; and then, 
writing the corrected image to the disc that needs to be restored. The first two steps 
can be carried out in one operation, since the resulting image (we will call it the "cor¬ 
recting image" later on) can be used for all discs (or, to be more precise, for all discs of 

the same capacity; for obvious reasons, it will be impossible to recover a 23-minute 

disc correctly using an image intended for 80-minute disc, and vice versa). 
To begin with, let us take a blank CD-RW disc. ("Blank" in this case doesn’t mean 

"one that has been never written," but, on the contrary, one that has been cleared by 

means of quick or full erasing. CD-R discs are also suitable.) Use any standard utility 
for CD burning and write to it a file of a size not exceeding 500 K (larger files won’t fit 
within the planned 300 sectors). It isn’t necessary to finalize the disc. 

Start Clone CD (or Alcohol 120%) and grab the disc image. After a couple of min¬ 
utes, two files will appear on the hard disk: the file name.img and the file name.ccd 
(if you instruct Clone CD also to save subchannel information, there will be a third file — 
file name. sub. However, in this case subchannel information will be more of a bore 

than a help. Therefore, it is advisable either to disable the "read subchannel info from 
data tracks" or delete the file name, sub file from the disk. The "Cue-Sheet" that Clone 
CD proposes you to create for compatibility with other programs, specifically with 
CDRWin, is also unnecessary. 

Open the file name.ccd file with any text editor (Notepad, for example), find the 
following strings (use the Point=0xa2 and Point=0x0l keywords for searching). 

Listing 10.6. The original starting address of Lead-out (left) and starting address 
of the first track of the disc (left) 

[Entry 2] [Entry 3] TOC entry 

Session=l Session=l ; Session number 

Point=0xa2 Point=0x01 ; point (A2h: leadout/Olh:N? track) 

ADR=0x01 ADR=0x01 data in q-subchannel positioned 

Control=0x04 Control= 0x04 ; data track 

TrackNo=0 TrackNo=0 ; Lead-In track 

AMin=0 AMin=0 ; \ 

ASec=0 ASec=0 +- absolute address in M:S:F 

AFrame=0 AFrame=0 ; / 

ALBA=-150 ALBA=-150 ; — Absolute address in LBA [no corrupt 

Zero=0 Zero=0 ; Reserved 

PMin=0 PMin=0 ; \ 

PSec=29 PSec=l ; + — Relative address in M:S:F 

PFrame=33 PFrame=0 ; / 

PLBA=2058 PLBA=0 — Relative address in LBA 
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Let’s change the PMin: PSec: PFrame fields belonging to point A2h so that they point 

to the end of the disc (A2h represents the Lead-out). The changed Lead-out may ap¬ 

pear as follows: 74:30:00. The Lead-out address must be chosen in such a way that 

a gap of at least 30 seconds remains between it and the external disc edge. It is even 

better if the width of Lead-out equals about 1 1/2 minutes. However, in this case the 

last tracks of the disc being restored will be lost. 

The contents of the PMin :PSec: PFrame fields belonging to point oih (the starting 

address of the first track) must be increased by the same value that was added to the 

corresponding Lead-out fields. For example, the modified variant might appear as 

follows: 74:01:42. (74:30:00 /* new Lead-out address */ — 00:29:33 /* old 
Lead-Out address*/ + 00:01:00 /* old starting address of the first track */ 

== 74:01:42 /* new starting address of the first track */. Briefly Speaking, 

the new version of the CCD file must appear as follows: 

Listing 10.7. A key fragment of the "reanimating file" for 75-minute CD-RW discs 

PMin=74 

PSec=30 

PFrame=00 

PMin=74 

PSec=01 

PFrame=42 

To be accurate, it would be desirable also to edit the plba fields (the LBA address 

is related to the absolute address by the following formula: lba == ( (Min*60) + + 

sec) *7 5 + Frame). However, current versions of CD-burning software use only ab¬ 

solute addresses, ignoring LBA addresses. Now, everything that is located between the 

end of the Lead-in area and the starting point of the first sector will become the Pre¬ 

gap. In the course of CD burning, the Pre-gap area will remain intact, and later it will 

be possible to read it at the sector level — exactly what we need! Honestly speaking, an 

excessive increase in the size of the Pre-gap area of the first track is not the best idea, 

since not all drives are capable of reading a long Pre-gap. From the compatibility point 

of view, it would be better to increase the Pre-gap area of the second track. However, in 

this case we’ll have to place the first track at the very beginning of the disc, in which 

case recoverable sectors will inevitably be lost from the body of the file. 

Although the fact that starting sectors are unlikely to contain anything valuable means 

that this doesn’t present a big problem, it is still better to avoid using this approach 

unless absolutely necessary. In case of emergency, do the following: write two sessions 

to the disc, and instead of changing the point oih address, change the starting address 

of point 02h (it will be located in the session=2 section). 

Now, let’s clear our test disc and fill it with files of any type to the full capacity (text 

files are preferable for this purpose, since they will allow you to see immediately what 
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you are restoring from the disc — garbage or some useful information). Having writ¬ 

ten these files to the disc, clear it immediately. 

After making sure that the disc has actually been cleared and that its contents are 

no longer available, start Clone CD and write the "reanimator" image that we have just 

created. Writing should be carried out in the DAO mode. Otherwise, you’ll fail to 

achieve anything useful. Therefore, before attempting to recover discs of any value on 
a drive, about which you have insufficient knowledge, first try to recover some test 

discs that hold nothing you are afraid of losing. 
The moment will finally arrive when you are holding in your hands a newly recov¬ 

ered CD. But has it actually been restored? To find out, insert the CD "recovered from 
ashes" into the NEC drive and, with a sinking heart, arbitrarily pick any sector located 

somewhere in the middle of the disc to read (starting sectors are usually filled with ze¬ 
roes and, furthermore, these sectors and the file system can easily appear to be useless 

garbage). Voila!!! The original content of the cleared disc is as readable as if it had 

never been erased!!! Still, when attempting to read the disc TOC using the standard 

tools in the operating system, your drive might go into a stupor very similar to the OS 
freezing (after all, the starting address of the first track is not located at the beginning 

of the disc, as might be expected, but in quite a different location). But this doesn’t 
matter. The main thing is that the disc is still available at the sector level, although not 

on every drive. For instance, the ASUS drive simply refuses to read such a disc, re¬ 
turning an error message, while the PHILIPS drive reads only a garble (fortunately, 

this garble is easily clean up. All you need to do is carry out sector-level EFM re¬ 
encoding from a more "suitable" position. Since there are only 14 possible positions, 

testing all of them won’t take long. Still, the best approach is to purchase a better- 
quality drive than making all of this effort. 

All that remains is to bring the disc to a state that will be accepted without any 
problems by the OS (what’s the sense of analyzing the disc at the low level?). Now, we 

read all of the disc sectors sequentially, and combine them into one IMG file, which, 
for the sake of clarity, we’ll assign the recover.img name. The sectors that, even after 

multiple attempts, we couldn’t manage to read will be skipped. Let’s copy the "reani- 

mator" CCD file to the recover.ccd file and return the starting address of the first track 

to its initial position. We will write the newly formed disc image to the new disc, and, 
if everything has been done correctly, any drive will read it without any problems. 

The test session of demo reanimation has been successfully completed. Now, having 

acquired the necessary experience, we can embark on much more serious tasks. For 

instance, start our own small business, dealing with the recovery of accidentally cleared 
CDs. fust kidding. 

What should we do if the cleared disc was a multisession disc? After all, the above- 
described techniques were intended for working only with one session! Actually, mul¬ 

tisession discs can also be restored and this task is only slightly more difficult. 
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To achieve this, however, we must first become acquainted with the other fields of the 

TOC. This topic will be covered in the next chapter. 
But what if something was written to the disc after it was cleared? Is recovery pos¬ 

sible in this case? It depends. Naturally, locations that were erased directly are lost. 

But the remaining information can still be restored. If it was a multisession disc before 

clearing, we won’t even need to labor over the recovery of the file system, since the file 

system of each next session usually duplicates that of the previous one. "Usually” 

means "in all cases other than that of erased files". At the same time, the last disc ses¬ 

sion proves to be located far from the beginning of the disc. Consequently, the risk 

of erasing it is minimum (provided, of course, that you worry about this in due time 

and don’t remember it suddenly after having rewritten the entire disc). The recovery 

of single-session discs with an erased file system is a much more difficult task, 

although it is also possible. First, a typical disc has two types of file systems: ISO-9660 

and loliet. Unfortunately, because of their close "geographical" location, both of them 

are ruined in the course of erasing the disc. Second, these file systems do not support 

fragmentation, and any file written to a CD represents a contiguous information 

block. All you need to do to restore it is determine its entry point and length. The en¬ 

try point of the file always coincides with the starting point of the sector, and the vast 

majority of file types allow for identifying their headers by a unique signature (in par¬ 

ticular, the following sequence is characteristic for ZIP files: 50 4B 03 04). The end 

of a file cannot be detected so definitely, and the only hook here is the structure of 

the file being restored. Nevertheless, most applications tolerate a collection of assorted 

garbage at the file trailer, so, in practice, the precision of 1 sector when determining 

the file length is sufficient. Since files reside on the disc sequentially and without gaps, 

the terminating sector of any file can be recognized reliably by decreasing the starting 

address of the next file by one. 

Generally speaking, the technique for recovering CDs is considerably easier than 

the art of recovering their "relatives" — diskettes and hard disks. On the other hand, 

the proverb "measure seven times before cutting once" still applies. One of the most 

unpleasant specific features of working with CD-RW discs is that, in this case, you 

are unable to fully control the writing process in progress. Diskettes and hard disks 

are fully transparent in this respect — you get what you actually write. CD-RW 

disks, on the contrary, represent a kind of "black box." You can never be sure that 

a specific drive will correctly interpret the commands passed to it. The recovery of 

CD-RW discs is not a standard operation, and any non-standard manipulation can 

be interpreted differently by different drives. The only advice that can be given here, 

is as follows: Do not let things take their own course. Try, try, and try again. 

This will allow you to accumulate valuable experience that will sometimes be of 

inestimable help. 
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How to Recover Unreadable CDs? 

CDs are not extremely reliable media. You can’t insure against their surfaces becoming 

scratched or contaminated, even provided that you store them very carefully (some¬ 
times, the CD drive itself scratches the media, and there is nothing you can do in order 
to prevent this). Even a disc that appears to be OK at first glance may have hidden 

flaws that render it totally or partially unreadable on standard drives. This problem is 
especially urgent for CD-R/CD-RW discs, whose manufacturing quality is still far 

from perfect, and the process of burning can be affected by various errors. 
But even a disc that has physical defects of the surface can be read successfully, 

thanks to the excessive redundancy of the information that it stores. With the grad¬ 
ual increase of the number of defects, however, the correcting capabilities of 
Reed-Solomon codes suddenly cease to be sufficient. When this happens, the disc 
becomes unreadable for no visible reason. The drive can even sometimes refuse 
to recognize it. 

Fortunately, in the vast majority of cases it is possible to recover the information 

stored on the disc even under these conditions. The next section will explain how 
to do this. 

General Recommendations on Recovery 
Not every CD that is unreadable (or is unstable) is actually defective. Most frequently, 

it is the operating system or the CD drive that is to blame. Before jumping to any con¬ 

clusions, try to read the disc on all drives available to you that are installed on comput¬ 

ers with newly installed operating systems. Many drives, even expensive brands, be¬ 

come extremely capricious after a short period of use. They often refuse to read discs 

that can be read without any problem on other drives. With regard to the operating 

system, it tends to catch various strange bugs as you install, reinstall, or remove vari¬ 

ous software. Sometimes, these bugs manifest themselves in unpredictable ways. 

For example, the TEAC drive installed in a system with a CDR4_2K.SYS driver inher¬ 

ited from PHIEIPS conflicts with the CD Player, refusing to display the contents 

of data discs when that application is active. After removing the CDR4_2K.SYS driver, 

everything works without any problems. 

Also, it mustn’t be forgotten that the corrective capabilities of different drive models 

are very different. For example, correcting codes of Ci, C2, Q-, and P- levels can be ac¬ 
complished effectively by all drives with which I am familiar. Their corrective capabili¬ 

ties is up to two errors for each of the Q and C2 levels, and up to 86 and 52 errors for the 
Q- and P- levels, respectively. To be honest, the number of detectable, but mathematically 
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irrecoverable, errors is as high as to 4 errors for Cj and C2 levels and up to 172/104 er¬ 
rors per Q/P levels. But only the position of erroneous bytes in a frame or sector, and 

not their values, can be determined with any guarantee. Knowing the position of erro¬ 

neous bytes and having at your disposal the source HF signal (e.g., analog signal taken 

directly from the read head), however, it is possible to recover some odds and ends of 
information — at least, theoretically. However, in my experience, the price of the drive 
is rather weakly correlated with its reading capabilities. For instance, relatively inex¬ 
pensive ASUS drives read practically everything, while expensive PHILIPS drives rec¬ 
ognize even their "native" discs with native drivers less consistently. 

Another important characteristic is the available range of read speeds. In general, 
the lower the rotation speed of the disc, the lower the requirements on its quality. 

However, this relationship is not always linear. Most drives have one or more preferred 
rotation speeds, at which their reading capabilities are at a maximum. For instance, it 
is possible that a defective disc is readable without any problems at 8x, but is totally 

unreadable at any other speed. The optimal speed can be determined easily by experi¬ 
ment. All you have to do is test the full range of available speeds. When purchasing 
a CD-ROM drive, choose the device that has the widest range of speeds. For instance, 
the PHILIPS CDRW 2400 can operate only at the following speeds: 16x, 24x, 38x and 
42x. The lack of speeds such as 4x and 8x limits the "ration" of this drive to high- 
quality discs only. 

For some unknown reason, Windows built-in tools do not permit the control of 

disc-rotation speed. Therefore, to gain such control, it is necessary to use third-party 

utilities. Fortunately, there are a large number of these tools available. For example, 

you can use Slow CD, Ahead Nero Drive Speedy or any other similar tool. Generally 

speaking, most drives reduce the rotation speed on their own initiative if they en¬ 

counter unreadable sectors. However, the quality of algorithms they implement for 

this purpose is still far from perfect, and user’s control over the rotation speed pro¬ 

vides considerably better results. 

If the disc cannot be read on any drive available to you, it is possible to try polish¬ 
ing it with any polishing paste. The Internet provides a lot of information on polishing 

optical surfaces in general, and CD surfaces in particular. As a matter of fact, books on 
astronomy, especially those concentrating on the construction of telescopes, are the 

most useful in this respect. Because of the general availability of such information, 
I will cover this topic only briefly in this book. In the majority of cases, it is possible to 

polish a scratched disc. If done properly, it is highly likely that the information can be 

restored. However, a number of factors do limit the degree, to which this is true. First, 

polishing repairs only the scratches on the lower surface of the disc, and cannot deal 
with the destruction of the reflecting layer. Second, when removing scratches, you in¬ 

evitably create new ones. Consequently, some CDs can become damaged even more 

badly after polishing. Third, it is impossible to acquire the skills of polishing CDs 
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on your first try. To master this skill will take much time and a number of attempts. 

But we’ll try another way! 
What, in fact, is very good for your disc is sponging it with a special anti-static liq¬ 

uid (you can buy it in your local computer store). Before wiping the disc, blow off all 
dust particles from its surface, to avoid producing more scratches. Never wipe the disk 
with concentric circular motions! It is necessary to wipe the surface with radial move¬ 

ments, from the center to the edges, replacing the cloth with each pass. 

The Disc Cannot Be Recognized by the Drive 
You insert the disc into the drive. The drive starts to rotate the disc, with the activity 

LED blinking wildly, making sure that at the specified speed, the disc cannot be read. 
It then starts to reduce the rotation speed until it comes to a full stop. The "DISK IN” 
indicator (if it is present on the front panel of the drive), sadly, blinks and goes off, 

thus signaling you that the piece of plastic that you have inserted, from its point 
of view, is anything you want it to be except for a CD. An attempt to access the disc 
results in an error message informing you that there is no disc in the drive and 
prompting you to insert one. 

The inability of the drive to recognize the disc is, in most cases, evidence of a mal¬ 

function in the CD-ROM. Cases where the problem is caused by a damaged CD are 

much more rare. Even if this disc was easily recognized yesterday, and even if the drive 

successfully recognizes all other discs, don’t rush to assume that the drive is working 

properly. Try to read this disc on another drive. Worse comes to the worst, reduce the 

disc rotation speed down to minimum. Be prepared for the fact that the drive may not 

obey you. Most drives automatically reduce the previous rotation speed settings when 

replacing the disc and do not allow you to change the speed until the disc has been 

recognized successfully (in particular, this is particularly characteristic of TEAC drives, 

while ASUS drives usually behave less temperamentally). 

If the disc being tested cannot be recognized by any of the drives available to you, 

the most likely cause is that the drives cannot read the disc’s TOC, which is stored in 

the Lead-in area. Remove the disc from the drive and take a careful look at the narrow 

glittering ring located near the internal edge of the disc. This ring is the Lead-in. Make 

sure that it has no deep scratches or is not contaminated. If it is dirty, remove the dirt 

using a clean cloth (most individuals forget about the Lead-in area when cleaning 

the disc, probably taking it for some kind of useless decoration). Overcoming scratches 

is significantly more difficult. Without enough experience at polishing CDs, it is not 

advisable to attempt this. If this is the case, bring the disc to a center specializing 

in information recovery. However, these aren’t always easy to locate and, further, 

this doesn’t guarantee success. Finally, it is wise to consider confidentiality and the cost 

of the service, among other factors. 
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Is it possible to reanimate such a disc on your own? It is! However, in order to do 

this, you’ll have to purchase certain equipment, at a cost of around $30. You will need 
a spare CD-ROM drive, with which you can experiment as you please and the loss of 
which won’t be a problem. Low-speed drives left over from previous upgrades of your 
computer are the most suitable for this purpose. 

The trick is that the TOC is not a must for working with CDs at the sector level, so 

you can do without it. In fact, this is not a hardware problem — it is the software 

problem. Having determined that irrecoverable errors have occurred in the course of 

reading the TOC, the drive firmware refuses to process the disc, despite the fact that 

TOC content is duplicated in the Q subcode channel and distributed over the entire 

spiral track. Furthermore, the drive actually only needs three main fields of the TOC: 

the address of the disc Lead-out area (in order to know, up to what position it is possi¬ 

ble to move the head), the starting address of the first track (in order to know where to 

start reading the data) and the address of the next Lead-in area (only for multisession 

drives). The easiest task is dealing with the starting address of the first track — 

it is equal to 00:02:00 (which corresponds to the zero LBA address). The Lead-out ad¬ 

dress, directly dependent on the CD capacity, does not necessarily need to be specified 

with high precision. It is enough to choose it so that it is no less than the address of the 

current Lead-out. Otherwise, all of the sectors located beyond this boundary will be¬ 

come unavailable. By setting the Lead-out address to 80 — or even 90 — minutes, we 

can guarantee that the entire disc surface will be available to the drive. Briefly speaking, 

if we can get access to the internal structures of the drive firmware, the recovery of the 

corrupted TOC would be a trifling matter. For this purpose, I use specially modified 

firmware of a quite ordinary, old CD-ROM drive (this is an old 8x, no-name brand), 

which allows for the manipulation of any service data. Therefore, it reads everything 

that is physically readable. 

If hacking microprocessor programs is too difficult for you, it is possible to proceed 

using another method. Carefully disassemble the CD-ROM drive and extract its internals 

from the case (the cheaper the spare drive, the better). Now, unscrew the bolts that fasten 

the metallic strap, on each a ’’plate” is fastened, that is pressed to the upper edge of the 

CD, to prevent it from sliding. Instead of this assembly, you can use a metallic ring, 

on any other heavy object. The main idea is to get free access to the CD, thus providing 

the possibility of "hot-swapping” it on the fly, without opening the tray. 

Now, connect the drive to the computer, power it on, and proceeding in a normal 
way, insert a specially prepared disc into the drive. The Lead-out area of the disc must 

be located somewhere around 80 to 90 minutes (it is possible to insert any CD with the 
video, with the size starting from 700 MB). Make sure that the disc has been correctly 

recognized, and, without shutting the system down, remove it from the drive without 
opening the tray. Now insert into this drive the disc that you want to restore. Since 

the TOC of the previous disc is already loaded into the cache, and the drive is unable 
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to detect disc replacement carried out in such a barbaric method, it will work with the 
new disc just the same way it would have with the old one. The only thing that you 
should not try to do is read the disc contents using the built-in operating-system tools. 
This won’t produce any result. After all, the operating system also caches data. There¬ 
fore, you can click "Refresh” until you go crazy, but Windows will continue to display 
the previous contents. Instead of this, take any grabber that can read the disc at the 
sector level and doesn’t ask any extra questions (for instance, you can use the free 
cd_raw_read utility by the author of this book) and copy the entire contents of the disc 
from the first sector to the last into an image file. Then, using any suitable CD-burning 
utility, write this image to CD-R or CD-RW. Although you won’t recover the disc it¬ 
self, you will at least save its contents! This method can be used both for audio and 
data discs with equal success. 

As an alternative, instead of removing the pressure plate, you can find the sensor 
for disc replacement and temporarily remove it, thus preventing the drive from no¬ 

ticing that the disc being recovered has not been replaced. Cheap drives use simple 
mechanical sensors that can be found easily. More expensive models do not contain 
a separate sensor at all. In these, the act of pressing the <EfECT> button is considered 
an indication of disc replacement. If this is the case, you can use the hole for emer¬ 

gency disc ejection. However, bear in mind that ejecting a disc using this method on 
a running drive can ruin the mechanism altogether. 

By the way, there are some drives that manage to read the disc even if the TOC has 

been completely destroyed. For instance, the list of these drives includes some MSI 
models. The lucky owners of these drives don’t need to disassemble their devices, since 

they are capable of reading corrupted drives even without this operation. 
When recovering multisession discs, it is possible to try to color the Lead-in disc 

area with black marker. The contents of the first session will be lost. All of the other 
sessions, however, will be read successfully by most drives. To do so, just recall that the 
Lead-in disc area looks like a glittering ring encircling the internal edge of the disc. 

The Disc is Recognized by the Drive; 
but Not by the Operating System 

You insert the disc into the drive. The drive starts to rotate it, and the DISK IN indicator 

(if there is one) goes on. However, any attempt to view the disc contents using standard 
OS tools results in various error messages. Scanning of the disc surface using 

Ahead Nero CD Speed (or any other similar utility) discovers one or two damaged sectors. 
This is an obvious symptom of file-system corruption. To be more precise, this is 

the corruption of the root directory of the file system. If this happens, do not panic. 
Recovery of the CD root directory, in contrast to recovery of the root directories 
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of hard disks and diskettes, doesn’t present a serious problem. Most CDs contain not 
one, but two duplicate file systems — ISO 9660 and Joliet (this is true for all discs 

manufactured after 1995). The simultaneous corruption of both root directories is ex¬ 
tremely unlikely. Besides this, due to the lack of fragmentation, subdirectories are not 

scattered over the entire CD surface. On the contrary, they are concentrated in a single 
location. Thanks to this, even if the root directory is totally destroyed, they can be re¬ 
covered quite easily. Finally, each next session of a multisession disc includes the con¬ 
tents of the file systems of all previous sessions (excluding, naturally, the deleted files). 

Therefore, if the file system of the last session is destroyed, we can easily recover the 
contents of all of the previous sessions. 

Unfortunately, built-in Windows tools do not allow you to selectively mount 

either the preferred file system or the preferred session. Instead, they force you to use 

the root directory of the Joliet file system of the last session. The simplest idea that 

comes to mind is to try to read the disc under pure MS-DOS with the MSCDEX 

driver, working exclusively with ISO 9660 and ignoring the existence of Joliet. Another 

variant is to use the iso 9660. dir utility developed by the author specially for working 

with destroyed file systems and restoring practically everything that can be restored. 

Naturally, since the maximum length of the file identifiers in the ISO 9660 systems 

is only 11 characters, long file names become irreversibly corrupted. However, you will 

probably agree, this is still better than nothing. 

The Computer Freezes When Inserting 
the Disc into the Drive 

You insert the disc into the drive, the drive starts rotating it, the activity indicator 

blinking intensely, and then it freezes. Quite often, it also freezes the operating system. 

In the best cases, the situation can be resolved by pressing the <EJECT> button. In the 

worst case, you’ll have to press <RESET>. 

Such behavior is typical for protected discs, the protection of which is based on 

a corrupted TOC. Most drives are loyal to corrupted TOC (although that depends on 

what exactly has been corrupted). However, one can run into devices that simply 

freeze after such a situation occurs. If it is still necessary to read the protected disc, try 

to change the drive. 

Another possible variant is a looped file system. This happens frequently when 

burning CD-R/CD-RW discs using incorrectly written software. If this is the case, 

press and hold the <Shift> button during disc loading to prevent the operating system 

from reading its contents (or temporarily disable the AutoRun feature). Then, using 

utilities like ISO 9660.dir, copy everything that can be copied from the disc. 
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The Disc Is Read with Errors 
If, despite all your efforts at decreasing the rotation speed or cleaning the disc surface, 
the disc is still read with errors, and corrupted sectors fall exactly to the area taken up 
by the most valuable files, then things have taken the worst turn. However, there is still 
some chance of successful data recovery, although very slim. 

First and foremost, there are all kinds of errors. Cases where the entire sector is 
unreadable are rare. As a rule, the case in point is that one or two bytes belonging to 
that sector are unreadable. At the same time, the correcting capabilities of redundant 
codes are such that up to 392 corrupted bytes are corrected already in the first-level 
decoder (CIRC-decoder). P-codes are capable of correcting up to another 86 errors, 
and Q-codes can correct up to 52 errors. This means that, under favorable error dis¬ 
tribution, it will be possible to recover up to 530 errors, or up to 25 percent of the total 
sector capacity. Only the horrible unreliability of optical media causes situations where 
even this vast data redundancy is sometimes unable to withstand failures. 

Depending on the setup parameters, the drive, having detected an irrecoverable er¬ 
ror, either returns the sector in the form, in which it managed to read it, or simply re¬ 
ports an error, leaving the contents of the output buffer in an undefined state. The idea 
of data recovery consists of making the drive return anything that it is capable to read. 
Naturally, corrupted bytes cannot be recovered. However, many file formats are quite 
tolerant to minor corruption. Music in the MP3/WMA format, video films and graphic 
images will be successfully recovered. Only in the exact place of the error will a click — 
sometimes louder than others — be audible, or some "artifact" will be noticeable. 
The case with archives is significantly worse. However, in most cases, only a single file 
will be lost, while the remaining contents of the archive will be unpacked normally (by the 
way, some archivers, such as RAR, support their own correcting codes, which provides for 
the restoration of corrupted archives with the expense of minimum redundancy). 

"Wait!" — some readers will cry, — "This is not right!" In fact, we tried to recover 
unreadable discs with one or another utility. And what was the effect? The system re¬ 
fused to consider "reanimated" MPG or AVI as video files! However, I would object 
that these utilities simply discarded all of the sectors that they could not read, and as 
a result, the file size and relative offsets of all its structures have changed. Conse¬ 
quently, it is no wonder that the file cannot be played after such a "recovery." 

Use any copier of protected discs that provides selective control over the error¬ 
processing mode and choose the 24h mode (the maximum possible error correction 
without interrupting data transmission in the case that an error encountered proves to 
be irrecoverable). Among all of the utilities suitable for this purpose, I recommend 
that you use the cd_raw_read utility developed by the author. As an alternative, it is 
possible to use Alcohol 120% and/or Clone CD. 

What reasons can be behind the fact that the sector is unreadable? First of all, there 
could be deep and wide radial scratches on the upper part. After penetrating a thin 
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barrier of protective coating, the scratches damage the reflective material directly, and 
with it, useful data are damaged. 

Narrow scratches that are not too numerous generally are not too dangerous, since the 
sector contents are distributed along the spiral track. Therefore, the loss of several bytes can 
be easily compensated for by data redundancy. However, there is one "but." How does the 
drive get to know how many pits and lands have been omitted? Since pits and lands do not 
correspond to binary zeroes and ones directly, and a binary one is encoded by the transition 
from pit to land and vice versa, while zero is encoded by the lack of transitions at the given 
point, it becomes obvious that the disappearance of an odd number of pits/lands seems to 
"reverse" the entire frame trailer. In other words, it simply ruins it. Hence, even a single 

scratch can generate an entire cascade of errors that cannot be recovered using standard 
correcting codes. However, theoretically, such errors can be repaired manually. Manually? 
Well, not quite, since for this purpose, you’ll need a special utility. An example of such 
a utility has already been written by the author and is now undergoing alpha-testing. It can 
successfully read discs that were not readable in a standard way. I hope that by the time that 
this book is published it will be ready for beta-testing and become available for free for all 
users who need it. However, since the length of one frame is only 24 bytes, the destruction 
of several sequential frames can be repaired even by standard correcting codes. Therefore, 
my utility will be needed only for recovering badly damaged discs with lots of scratches. 

Wide scratches are a different matter. Not only do they "eat up" several frames en¬ 
tirely, they also send the optical head astray from the track. When the head falls into 
the hole created by a scratch, it becomes totally disoriented, since it simply has nothing 
to rely upon. After that, the head "flies out" and lands on one of the neighboring 
tracks. Intellectual drives detect such a situation and position the head to the required 
place. The drives that have no such intellectual functions, which, by the way, are the 
vast majority, self-confidently try to continue reading as if nothing has happened. 
As a result, the header of one sector is combined with the trailer of another one, and, 
naturally, any attempt to restore such a sector using standard correcting code will pro¬ 
duce nothing but garbage. Consequently, the drive will report an irrecoverable error. 
The only way out is to read such a sector until the head falls into the same track, from 
which the reading of the sector was begun. The number of reading attempts in this 
case must be large enough (100 or more). After all, it is much easier to divert from the 
narrow spiral track than keep on following it! 

Concentric scratches represent the most destructive type of damage that can only 
exist on CDs. The distribution of information along the spiral track is now unable to 
withstand the failure, since corruption influences the entire sector (in contrast to ra¬ 
dial scratches that damage only a small part of the sector). Besides this, concentric 
scratches disorient the tracking system, since sensor lasers are slightly defocused, and, 
therefore, are very sensitive to such surface defects. 

The scratches located at the lower side of the disc can in most cases be eliminated by 
polishing, while scratches that involve the working layer are impossible to eliminate. 



On the CD 

The companion CD contains all of the required utilities for the analysis and copying 
of protected CDs. Note that bypassing the protection against CD copying is not 
the same thing as copyright violation! The laws of many countries explicitly allow 

the creation of backup copies of licensed media. The PHILIPS Corporation, which is 
one of the inventors of CD technology, strongly opposes any deviations from the stan¬ 

dard and insists on that protected discs including anti-copying technology should not 
use the "Compact Disc" logo. Legislation in many countries supports this claim. 

Any disc protected by a non-standard format must be marked with an unequivocal 
warning that, although the piece of plastic you are purchasing bears a resemblance to 
a CD, in reality, it is not a proper CD. 

Furthermore, to develop CD protection mechanisms, the programmer must have 

at least a general idea about the working methods and technical tools used by his 
or her opponents. To master this technical arsenal at a level no lower than that of 
the opponent is even better. Simply speaking, it allows us to detect and reinforce the 
most probable targets against hacker attacks, concentrating on them the maximum 
available intellectual resources. This means that the developer of protection mecha¬ 

nisms must be inspired by the hacker psychology, and start thinking like a hacker. 
Thus, mastering information-protection technology assumes mastering of cracking 

technology. If you don’t know how protection mechanisms are cracked, what their 
vulnerabilities are, and have no information about the hacker’s arsenal, you won’t 

be able to create a strong protection mechanism that would be both inexpensive 
and easy to implement. 
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The SRC directory contains all the source code of the demo examples used 
in this book. 

□ ETC — Demo examples for low-level access to CD-ROM drives 

□ RS.LIB — Libraries for low-level working with CD sectors from CloneCD and 
Ahead Nero and interfaces to them, with examples illustrating their practical use 

□ RS.SIMPLE — Elementary examples illustrating the principle of Reed-Solomon 
codes 

□ SCSI.ALT — Source code of the driver allowing execution of the IN/OUT machine 
commands from the application level 

□ SCSI.LIB — Tools and utilities developed by the author for working with pro¬ 

tected CDs 

Root directory has many small but useful utilities, including the Pinch of File 
block file copier useful for file-by-file copying of CDs containing files with incorrect 

lengths and starting sectors. 
The README.TXT file describes the contents of the CD-ROM. 
The DivX511Bundle.exe file shows video about the A-List Publsihing books. 

To watch this file, install Standard DivX Codec(FREE) available for free download 

from http://www.divx.com/divx/. 
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